Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The...Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.展开更多
The purpose of this paper is to assess the operational efficiency of a public bus transportation via a case study from a company in a large city of China by using data envelopment analysis(DEA)model and Shannon’s ent...The purpose of this paper is to assess the operational efficiency of a public bus transportation via a case study from a company in a large city of China by using data envelopment analysis(DEA)model and Shannon’s entropy.This company operates 37 main routes on the backbone roads.Thus,it plays a significant role in public transportation in the city.According to bus industry norms,an efficiency evaluation index system is constructed from the perspective of both company operations and passenger demands.For passenger satisfaction,passenger waiting time and passenger-crowding degree are considered,and they are undesirable indicators.To describe such indicators,a superefficient DEA model is constructed.With this model,by using actual data,efficiency is evaluated for each bus route.Results show that the DEA model with Shannon’s entropy being combined achieves more reasonable results.Also,sensitivity analysis is presented.Therefore,the results are meaningful for the company to improve its operations and management.展开更多
The Shannon information entropy is investigated within the nonrelativistic framework. The Kratzer potential is con- sidered as the interaction and the problem is solved in a quasi-exact analytical manner to discuss th...The Shannon information entropy is investigated within the nonrelativistic framework. The Kratzer potential is con- sidered as the interaction and the problem is solved in a quasi-exact analytical manner to discuss the ground and first excited states. Some interesting features of the information entropy densities as well as the probability densities are demonstrated. The Bialynicki-Birula-Mycielski inequality is also tested and found to hold for these cases.展开更多
Mushrooms have a remarkable scientific value due to their nutritional, medicinal properties and industrial applications in enzyme production, so that effort in the maintenance of native wild mushroom varieties is incr...Mushrooms have a remarkable scientific value due to their nutritional, medicinal properties and industrial applications in enzyme production, so that effort in the maintenance of native wild mushroom varieties is increasing. The present study focuses on the use of Random Amplified Polymorphic DNA (RAPD) markers for biodiversity measure of wild mushroom species of the Northwest mountainous region of Greece. Data mining of similarity matrices from RAPD analysis was used to extract measurable entropy parameters for mushroom biodiversity monitoring based on Shannon’s information entropy. Shannon information index provides an easy assessment of the entropy of the genetic information of the germplasm per mushroom species while the total equitability index (E<sub>H</sub>) = 0.871 offers an overall estimation of the genetic variation evenness of all species in the population of the studied mushrooms. Application of RAPDs with parallel entropy analysis is an easily applicable and low-cost valuable technology in environmental monitoring, using genetic information of wild mushroom species as an indicator that can lead to future actions in biodiversity maintenance and germplasm protection. The provided methodology can serve as a pilot procedure enriched with other environmental factors to monitor and protect wild mushroom communities native to the Greek countryside or in any part of the world and provide comparable results about biodiversity from different regions using common entropy indices.展开更多
The aim of this study is to understand and quantify the urban growth and trend in Zarqa city during the period 1990 to 2014 and to produce land use and cover map for the studied area through the use of the GIS and rem...The aim of this study is to understand and quantify the urban growth and trend in Zarqa city during the period 1990 to 2014 and to produce land use and cover map for the studied area through the use of the GIS and remote sensing techniques with Shannon’s Entropy statistical method. For this purpose, three Landsat images were used for land use classification by using supervised maximum likelihood classification techniques to extract and assess the changes of urban lands. The results indicated that the urban areas in Zarqa city increased by 22.15% in the period from 1990 to 2005 and 14.86% from 2005 to 2014, with a rate of expansion of 0.96 and by 1.31 km<sup>2</sup>/ year for the two time periods respectively. The entropy value increased from 1.20 in the first period to 1.38 in the second, while the entropy value for the NE, NW, SE and SW zones showed high values, which confirmed that urban expansion and sprawling had existed in the past twenty four years in the study area. Urban expansion and sprawl cause different impacts on the natural, economic, and aesthetic aspects of the city which lead and guide government officials and planners to understand and monitor current growth and visualize future growth.展开更多
The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAH...The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.展开更多
Discrete dynamical systems are given by the pair (X,f) where X is a compact metric space and f: X→X is a continuous map. During years, a long list of results have appeared to precise and understand what is the comple...Discrete dynamical systems are given by the pair (X,f) where X is a compact metric space and f: X→X is a continuous map. During years, a long list of results have appeared to precise and understand what is the complexity of the systems. Among them, one of the most popular is that of topological entropy. In modern applications, other conditions on X and f have been considered. For example, X can be non-compact or f can be discontinuous (only in a finite number of points and with bounded jumps on the values of f or even non-bounded jumps). Such systems are interesting from theoretical point of view in Topological Dynamics and appear frequently in applied sciences such as Electronics and Control Theory. In this paper, we are reviewing the origins of the notion of entropy and studying some developing of it leading to modern notions of entropies. At the same time, we will incorporate some mathematical foundations of such old and new ideas until the appearance of Shannon entropy. To this end, we start with the introduction for the first time of the notion of entropy in thermodynamics by R. Clausius and its evolution by L. Boltzmann until the appearing in the twenty century of Shannon and Kolmogorov-Sinai entropies and the subsequent topological entropy. In turn, such notions have evolved to other recent situations where it is necessary to give some extended versions of them adapted to new problems. Of special interest is to appreciate the connexions of the notions of entropy from Boltzmann and Shannon. Since this history is long, we will not deal with the Kolmogorov-Sinai entropy or with topological entropy and modern approaches.展开更多
In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbC1 tri...In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbC1 triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbC1 triangular quantum dot are also studied.展开更多
The Shannon information entropy for the Schrodinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are brok...The Shannon information entropy for the Schrodinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position Sx and momentum S p information entropies for six low-lying states are calculated. We notice that the Sx decreases with the increasing mass barrier width a and becomes negative beyond a particular width a,while the Sp first increases with a and then decreases with it. The negative Sx exists for the probability densities that are highly localized. We find that the probability density ρ(x) for n = 1, 3, 5 are greater than 1 at position x = 0. Some interesting features of the information entropy densities ρs(x) and ρs(p) are demonstrated. The Bialynicki-Birula-Mycielski(BBM)inequality is also tested for these states and found to hold.展开更多
We first study the Shannon information entropies of constant total length multiple quantum well systems and then explore the effects of the number of wells and confining potential depth on position and momentum inform...We first study the Shannon information entropies of constant total length multiple quantum well systems and then explore the effects of the number of wells and confining potential depth on position and momentum information entropy density as well as the corresponding Shannon entropy.We find that for small full width at half maximum(FWHM) of the position entropy density,the FWHM of the momentum entropy density is large and vice versa.By increasing the confined potential depth,the FWHM of the position entropy density decreases while the FWHM of the momentum entropy density increases.By increasing the potential depth,the frequency of the position entropy density oscillation within the quantum barrier decreases while that of the position entropy density oscillation within the quantum well increases.By increasing the number of wells,the frequency of the position entropy density oscillation decreases inside the barriers while it increases inside the quantum well.As an example,we might localize the ground state as well as the position entropy densities of the1 st,2 nd,and 6 th excited states for a four-well quantum system.Also,we verify the Bialynicki–Birula–Mycieslki(BBM)inequality.展开更多
We analyze correlations and patterns of oxidative activity of 3D DNA at DNA fluorescence in complete sets of chromosomes in neutrophils of peripheral blood. Fluorescence of DNA is registered by method of flow cytometr...We analyze correlations and patterns of oxidative activity of 3D DNA at DNA fluorescence in complete sets of chromosomes in neutrophils of peripheral blood. Fluorescence of DNA is registered by method of flow cytometry with nanometer spatial resolution. Experimental data present fluorescence of many ten thousands of cells, from different parts of body in each population, in various blood samples. Data is presented in histograms as frequency distributions of flashes in the dependence on their intensity. Normalized frequency distribution of information in these histograms is used as probabilistic measure for definition of Shannon entropy. Data analysis shows that for this measure of Shannon entropy common sum of entropy, i.e. total entropy E, for any histogram is invariant and has identical trends of changes all values of E (r) = lnr at reduction of rank r of histogram. This invariance reflects informational homeostasis of chromosomes activity inside cells in multi-scale networks of entropy, for varied ranks r. Shannon entropy in multi-scale DNA networks has much more dense packing of correlations than in “small world” networks. As the rule, networks of entropy differ by the mix of normal D 2 and abnormal D > 2 fractal dimensions for varied ranks r, the new types of fractal patterns and hinges for various topology (fractal dimension) at different states of health. We show that all distributions of information entropy are divided on three classes, which associated in diagnostics with a good health or dominants of autoimmune or inflammatory diseases. This classification based on switching of stability at transcritical bifurcation in homeostasis regulation. We defined many ways for homeostasis regulation, coincidences and switching patterns in branching sequences, the averages of Hölder for deviations of entropy from homeostasis at different states of health, with various saturation levels the noises of entropy at activity of all chromosomes in support regulation of homeostasis.展开更多
Cairo city, being the Egypt’s industrial and cultural center, has a problem of rapid urban sprawl. The city has an extremely high population density which is continuously increasing through informal settlements that ...Cairo city, being the Egypt’s industrial and cultural center, has a problem of rapid urban sprawl. The city has an extremely high population density which is continuously increasing through informal settlements that grow by sprawling due to migration from the Nile Delta villages and the high population growth rates. The present study attempts to understand, detect and quantify the spatial pattern of Cairo’s urban sprawl using Shannon’s entropy and multi-temporal Landsat TM and ETM images acquired for the period from 1984 to 2013. Supervised classification was applied to extract the built-up areas and to measure the changes in the urban land-use class among the city wards. Shannon’s entropy was applied to model the city’s urban sprawl, trend and spatial change. The entropy values for the city’s electoral wards were modeled and used in an interpolation function to create an entropy surface (index) for each acquired temporal image. Such index indicates the spatial pattern of the urban sprawl and provides a visual comparison of the entropy phenomenon in such wards. Results indicate that Shannon’s entropy index increased from (1.4615) in year 1984 to (2.1023) in year 2013, indicating more dispersed urban growth, a sign of urban sprawl. The maximum entropy values are found in the eastern wards namely El Nozha, Awal Nasr District, Thany Nasr-District, El Salam, El Marg and El Bassatein. A regression analysis was carried for the population growth rate and the built-up areas. Findings help in understanding the sprawl patterns and dynamics among Cairo’s electoral wards and provide a visual comparison. The applied methodology provides explanations and facilitates tracing and measuring the urban sprawl which is needed by decision makers and city planners of mega cities.展开更多
Mean King’s problem is formulated as a retrodiction problem among noncommutative observables. In this paper, we reformulate Mean King’s problem using Shannon’s entropy as a first step of introducing quantum uncerta...Mean King’s problem is formulated as a retrodiction problem among noncommutative observables. In this paper, we reformulate Mean King’s problem using Shannon’s entropy as a first step of introducing quantum uncertainty relation with delayed classical information. As a result, we give informational and statistical meanings to the estimation on Mean King problem. As its application, we give an alternative proof of nonexistence of solutions of Mean King’s problem for qubit system without using entanglement.展开更多
基金The National Basic Research Program of China(973 Program) (No2004CB217702-01)the Foundation of ExcellentPhDThesis of Southeast University
文摘Experiments of dense-phase pneumatic conveying of pulverized coal using nitrogen are carded out in an experimental test facility with the conveying pressure up to 4. 0 MPa and the gas-solid ratio up to 450 kg/m^3. The influences of different conveying differential pressures, coal moisture contents, gas volume flow rates and superficial velocities on the solid-gas ratios are investigated. Shannon entropy analysis of pressure fluctuation time series is developed to reveal the flow characteristics. Through investigation of the distribution of the Shannon entropy under different conditions, the flow stability and the evolutional tendency of the Shannon entropy in different regimes and regime transition processes are discovered, and the relationship between the Shannon entropy and the flow regimes is also established. The results indicate that the solid-gas ratio and the Shannon entropy rise with the increase in conveying differential pressure. The solid-gas ratio and the Shannon entropy reveal preferable regularity with gas volume flow rates. The Shannon entropy is different for different flow regimes, and can be used to identify the flow regimes. Both mass flow rate and the Shannon entropy decrease with the increase in moisture contents. The Shannon entropy analysis is a feasible approach for researching the characteristics of flow regimes, flow stability and flow regime transitions in dense-phase pneumatic conveying under high pressure.
基金supported in part by the Science and Technology Development Fund(FDCT),Macao SAR(0017/2019/A1,0002/2020/AKP)in part by the National Natural Science Foundation of China(61803397)。
文摘The purpose of this paper is to assess the operational efficiency of a public bus transportation via a case study from a company in a large city of China by using data envelopment analysis(DEA)model and Shannon’s entropy.This company operates 37 main routes on the backbone roads.Thus,it plays a significant role in public transportation in the city.According to bus industry norms,an efficiency evaluation index system is constructed from the perspective of both company operations and passenger demands.For passenger satisfaction,passenger waiting time and passenger-crowding degree are considered,and they are undesirable indicators.To describe such indicators,a superefficient DEA model is constructed.With this model,by using actual data,efficiency is evaluated for each bus route.Results show that the DEA model with Shannon’s entropy being combined achieves more reasonable results.Also,sensitivity analysis is presented.Therefore,the results are meaningful for the company to improve its operations and management.
文摘The Shannon information entropy is investigated within the nonrelativistic framework. The Kratzer potential is con- sidered as the interaction and the problem is solved in a quasi-exact analytical manner to discuss the ground and first excited states. Some interesting features of the information entropy densities as well as the probability densities are demonstrated. The Bialynicki-Birula-Mycielski inequality is also tested and found to hold for these cases.
文摘Mushrooms have a remarkable scientific value due to their nutritional, medicinal properties and industrial applications in enzyme production, so that effort in the maintenance of native wild mushroom varieties is increasing. The present study focuses on the use of Random Amplified Polymorphic DNA (RAPD) markers for biodiversity measure of wild mushroom species of the Northwest mountainous region of Greece. Data mining of similarity matrices from RAPD analysis was used to extract measurable entropy parameters for mushroom biodiversity monitoring based on Shannon’s information entropy. Shannon information index provides an easy assessment of the entropy of the genetic information of the germplasm per mushroom species while the total equitability index (E<sub>H</sub>) = 0.871 offers an overall estimation of the genetic variation evenness of all species in the population of the studied mushrooms. Application of RAPDs with parallel entropy analysis is an easily applicable and low-cost valuable technology in environmental monitoring, using genetic information of wild mushroom species as an indicator that can lead to future actions in biodiversity maintenance and germplasm protection. The provided methodology can serve as a pilot procedure enriched with other environmental factors to monitor and protect wild mushroom communities native to the Greek countryside or in any part of the world and provide comparable results about biodiversity from different regions using common entropy indices.
文摘The aim of this study is to understand and quantify the urban growth and trend in Zarqa city during the period 1990 to 2014 and to produce land use and cover map for the studied area through the use of the GIS and remote sensing techniques with Shannon’s Entropy statistical method. For this purpose, three Landsat images were used for land use classification by using supervised maximum likelihood classification techniques to extract and assess the changes of urban lands. The results indicated that the urban areas in Zarqa city increased by 22.15% in the period from 1990 to 2005 and 14.86% from 2005 to 2014, with a rate of expansion of 0.96 and by 1.31 km<sup>2</sup>/ year for the two time periods respectively. The entropy value increased from 1.20 in the first period to 1.38 in the second, while the entropy value for the NE, NW, SE and SW zones showed high values, which confirmed that urban expansion and sprawling had existed in the past twenty four years in the study area. Urban expansion and sprawl cause different impacts on the natural, economic, and aesthetic aspects of the city which lead and guide government officials and planners to understand and monitor current growth and visualize future growth.
基金funded by National Nature Science Foundation of China,Yunnan Funda-Mental Research Projects,Special Project of Guangdong Province in Key Fields of Ordinary Colleges and Universities and Chaozhou Science and Technology Plan Project of Funder Grant Numbers 82060329,202201AT070108,2023ZDZX2038 and 202201GY01.
文摘The analysis of microstates in EEG signals is a crucial technique for understanding the spatiotemporal dynamics of brain electrical activity.Traditional methods such as Atomic Agglomerative Hierarchical Clustering(AAHC),K-means clustering,Principal Component Analysis(PCA),and Independent Component Analysis(ICA)are limited by a fixed number of microstate maps and insufficient capability in cross-task feature extraction.Tackling these limitations,this study introduces a Global Map Dissimilarity(GMD)-driven density canopy K-means clustering algorithm.This innovative approach autonomously determines the optimal number of EEG microstate topographies and employs Gaussian kernel density estimation alongside the GMD index for dynamic modeling of EEG data.Utilizing this advanced algorithm,the study analyzes the Motor Imagery(MI)dataset from the GigaScience database,GigaDB.The findings reveal six distinct microstates during actual right-hand movement and five microstates across other task conditions,with microstate C showing superior performance in all task states.During imagined movement,microstate A was significantly enhanced.Comparison with existing algorithms indicates a significant improvement in clustering performance by the refined method,with an average Calinski-Harabasz Index(CHI)of 35517.29 and a Davis-Bouldin Index(DBI)average of 2.57.Furthermore,an information-theoretical analysis of the microstate sequences suggests that imagined movement exhibits higher complexity and disorder than actual movement.By utilizing the extracted microstate sequence parameters as features,the improved algorithm achieved a classification accuracy of 98.41%in EEG signal categorization for motor imagery.A performance of 78.183%accuracy was achieved in a four-class motor imagery task on the BCI-IV-2a dataset.These results demonstrate the potential of the advanced algorithm in microstate analysis,offering a more effective tool for a deeper understanding of the spatiotemporal features of EEG signals.
文摘Discrete dynamical systems are given by the pair (X,f) where X is a compact metric space and f: X→X is a continuous map. During years, a long list of results have appeared to precise and understand what is the complexity of the systems. Among them, one of the most popular is that of topological entropy. In modern applications, other conditions on X and f have been considered. For example, X can be non-compact or f can be discontinuous (only in a finite number of points and with bounded jumps on the values of f or even non-bounded jumps). Such systems are interesting from theoretical point of view in Topological Dynamics and appear frequently in applied sciences such as Electronics and Control Theory. In this paper, we are reviewing the origins of the notion of entropy and studying some developing of it leading to modern notions of entropies. At the same time, we will incorporate some mathematical foundations of such old and new ideas until the appearance of Shannon entropy. To this end, we start with the introduction for the first time of the notion of entropy in thermodynamics by R. Clausius and its evolution by L. Boltzmann until the appearing in the twenty century of Shannon and Kolmogorov-Sinai entropies and the subsequent topological entropy. In turn, such notions have evolved to other recent situations where it is necessary to give some extended versions of them adapted to new problems. Of special interest is to appreciate the connexions of the notions of entropy from Boltzmann and Shannon. Since this history is long, we will not deal with the Kolmogorov-Sinai entropy or with topological entropy and modern approaches.
文摘In this paper, the time evolution of the quantum mechanical state of a polaron is examined using the Pekar type variational method on the condition of the electric-LO-phonon strong-coupling and polar angle in RbC1 triangular quantum dot. We obtain the eigenenergies, and the eigenfunctions of the ground state, and the first excited state respectively. This system in a quantum dot can be treated as a two-level quantum system qubit and the numerical calculations are performed. The effects of Shannon entropy and electric field on the polaron in the RbC1 triangular quantum dot are also studied.
基金supported partially by project 20150964SIP-IPN, COFAA-IPN, Mexico
文摘The Shannon information entropy for the Schrodinger equation with a nonuniform solitonic mass is evaluated for a hyperbolic-type potential. The number of nodes of the wave functions in the transformed space z are broken when recovered to original space x. The position Sx and momentum S p information entropies for six low-lying states are calculated. We notice that the Sx decreases with the increasing mass barrier width a and becomes negative beyond a particular width a,while the Sp first increases with a and then decreases with it. The negative Sx exists for the probability densities that are highly localized. We find that the probability density ρ(x) for n = 1, 3, 5 are greater than 1 at position x = 0. Some interesting features of the information entropy densities ρs(x) and ρs(p) are demonstrated. The Bialynicki-Birula-Mycielski(BBM)inequality is also tested for these states and found to hold.
基金Project supported by the Iranian Nanotechnology Initiative Council(INIC)the 20180677-SIP-IPN,Mexicothe CONACYT 288856-CB-2016,Mexico
文摘We first study the Shannon information entropies of constant total length multiple quantum well systems and then explore the effects of the number of wells and confining potential depth on position and momentum information entropy density as well as the corresponding Shannon entropy.We find that for small full width at half maximum(FWHM) of the position entropy density,the FWHM of the momentum entropy density is large and vice versa.By increasing the confined potential depth,the FWHM of the position entropy density decreases while the FWHM of the momentum entropy density increases.By increasing the potential depth,the frequency of the position entropy density oscillation within the quantum barrier decreases while that of the position entropy density oscillation within the quantum well increases.By increasing the number of wells,the frequency of the position entropy density oscillation decreases inside the barriers while it increases inside the quantum well.As an example,we might localize the ground state as well as the position entropy densities of the1 st,2 nd,and 6 th excited states for a four-well quantum system.Also,we verify the Bialynicki–Birula–Mycieslki(BBM)inequality.
文摘We analyze correlations and patterns of oxidative activity of 3D DNA at DNA fluorescence in complete sets of chromosomes in neutrophils of peripheral blood. Fluorescence of DNA is registered by method of flow cytometry with nanometer spatial resolution. Experimental data present fluorescence of many ten thousands of cells, from different parts of body in each population, in various blood samples. Data is presented in histograms as frequency distributions of flashes in the dependence on their intensity. Normalized frequency distribution of information in these histograms is used as probabilistic measure for definition of Shannon entropy. Data analysis shows that for this measure of Shannon entropy common sum of entropy, i.e. total entropy E, for any histogram is invariant and has identical trends of changes all values of E (r) = lnr at reduction of rank r of histogram. This invariance reflects informational homeostasis of chromosomes activity inside cells in multi-scale networks of entropy, for varied ranks r. Shannon entropy in multi-scale DNA networks has much more dense packing of correlations than in “small world” networks. As the rule, networks of entropy differ by the mix of normal D 2 and abnormal D > 2 fractal dimensions for varied ranks r, the new types of fractal patterns and hinges for various topology (fractal dimension) at different states of health. We show that all distributions of information entropy are divided on three classes, which associated in diagnostics with a good health or dominants of autoimmune or inflammatory diseases. This classification based on switching of stability at transcritical bifurcation in homeostasis regulation. We defined many ways for homeostasis regulation, coincidences and switching patterns in branching sequences, the averages of Hölder for deviations of entropy from homeostasis at different states of health, with various saturation levels the noises of entropy at activity of all chromosomes in support regulation of homeostasis.
文摘Cairo city, being the Egypt’s industrial and cultural center, has a problem of rapid urban sprawl. The city has an extremely high population density which is continuously increasing through informal settlements that grow by sprawling due to migration from the Nile Delta villages and the high population growth rates. The present study attempts to understand, detect and quantify the spatial pattern of Cairo’s urban sprawl using Shannon’s entropy and multi-temporal Landsat TM and ETM images acquired for the period from 1984 to 2013. Supervised classification was applied to extract the built-up areas and to measure the changes in the urban land-use class among the city wards. Shannon’s entropy was applied to model the city’s urban sprawl, trend and spatial change. The entropy values for the city’s electoral wards were modeled and used in an interpolation function to create an entropy surface (index) for each acquired temporal image. Such index indicates the spatial pattern of the urban sprawl and provides a visual comparison of the entropy phenomenon in such wards. Results indicate that Shannon’s entropy index increased from (1.4615) in year 1984 to (2.1023) in year 2013, indicating more dispersed urban growth, a sign of urban sprawl. The maximum entropy values are found in the eastern wards namely El Nozha, Awal Nasr District, Thany Nasr-District, El Salam, El Marg and El Bassatein. A regression analysis was carried for the population growth rate and the built-up areas. Findings help in understanding the sprawl patterns and dynamics among Cairo’s electoral wards and provide a visual comparison. The applied methodology provides explanations and facilitates tracing and measuring the urban sprawl which is needed by decision makers and city planners of mega cities.
文摘Mean King’s problem is formulated as a retrodiction problem among noncommutative observables. In this paper, we reformulate Mean King’s problem using Shannon’s entropy as a first step of introducing quantum uncertainty relation with delayed classical information. As a result, we give informational and statistical meanings to the estimation on Mean King problem. As its application, we give an alternative proof of nonexistence of solutions of Mean King’s problem for qubit system without using entanglement.