Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical...Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized.展开更多
Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition sys...Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.展开更多
In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resoluti...In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resolution,single viewpoint,and occlusion.Different from the existing works predicting symmetry from the complete shape,we propose a learning approach for symmetry predic-tion based on a single RGB-D image.Instead of directly predicting the symmetry from incomplete shapes,our method consists of two modules,i.e.,the multi-mod-al feature fusion module and the detection-by-reconstruction module.Firstly,we build a channel-transformer network(CTN)to extract cross-fusion features from the RGB-D as the multi-modal feature fusion module,which helps us aggregate features from the color and the depth separately.Then,our self-reconstruction net-work based on a 3D variational auto-encoder(3D-VAE)takes the global geo-metric features as input,followed by a prediction symmetry network to detect the symmetry.Our experiments are conducted on three public datasets:ShapeNet,YCB,and ScanNet,we demonstrate that our method can produce reliable and accurate results.展开更多
A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segme...A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segment lung fields from chest radiographs. The modified SIFT local descriptor, more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel at each resolution level during the segmentation optimization procedure. Experimental results show that the proposed method is more robust and accurate than the original ASMs in terms of an average overlap percentage and average contour distance in segmenting the lung fields from an available public database.展开更多
The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the origin...The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.展开更多
Optical microscopy is commonly used for cancer cell detection. Focusing on carcinoma cell identification via optical microscopy, a proof-of-concept study was performed at Laboratory of Design, Optimization and Modelin...Optical microscopy is commonly used for cancer cell detection. Focusing on carcinoma cell identification via optical microscopy, a proof-of-concept study was performed at Laboratory of Design, Optimization and Modeling (LCOMS) to determine the grade of cancer cells. This paper focuses on three types of abnormal cells;namely, Benign Hyperplasia (BH), Intraepithelial Neoplasia (IN), which is a precursor state for cancer, and Carcinoma (Ca), which corresponds to abnormal tissue proliferation cancer. These types of cells were used to assess the efficiency of using shape features to identify carcinoma cells. A comparative study based on performance indicator concludes that three features, Area, Xor-Convex, and Solidity, were found to be effective in identifying the Carcinoma grade of cancer cells.展开更多
A modified Fourier descriptor was presented. Information from a local space can be used more efficiently. After the boundary pixel set of an object was computed, centroid distance approach was used to compute shape si...A modified Fourier descriptor was presented. Information from a local space can be used more efficiently. After the boundary pixel set of an object was computed, centroid distance approach was used to compute shape signature in the local space. A pair of shape signature and boundary pixel gray was used as a point in a feature space. Then, Fourier transform was used for composition of point information in the feature space so that the shape features could be computed. It is proved theoretically that the shape features from modified Fourier descriptors are invariant to translation, rotation, scaling, and change of start point. It is also testified by measuring the retrieval performance of the systems that the shape features from modified Fourier oescriptors are more discriminative than those from other Fourier descriptors.展开更多
Active Shape Model (ASM) is a powerful statistical tool to extract the facial features of a face image under frontal view. It mainly relies on Principle Component Analysis (PCA) to statistically model the variabil...Active Shape Model (ASM) is a powerful statistical tool to extract the facial features of a face image under frontal view. It mainly relies on Principle Component Analysis (PCA) to statistically model the variability in the training set of example shapes. Independent Component Analysis (ICA) has been proven to be more efficient to extract face features than PCA. In this paper, we combine the PCA and ICA by the consecutive strategy to form a novel ASM. Firstly, an initial model, which shows the global shape variability in the training set, is generated by the PCA-based ASM. And then, the final shape model, which contains more local characters, is established by the ICA-based ASM. Experimental results verify that the accuracy of facial feature extraction is statistically significantly improved by applying the ICA modes after the PCA modes.展开更多
Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower...Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).展开更多
In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which ...In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which further expands their applications. Sn addition results in the monotonous rising of average valence electron number (e/a). In proportion, the single α″ martensite phase directly evolves into merely β parent phase in present Ti-V-Al-based shape memory alloys, as Sn content increases from 0.5 to 5.0 at.%. Meanwhile, Sn addition causes the reduction in the grain size. Combined with transmission electron microscopy (TEM) observation and d electron theory analysis, it can be speculated that Sn addition can suppress the precipitation of ω phase. With increasing Sn content, fracture strength invariably decreases from 962 to 792 MPa, whereas the yield strength firstly decreases and then increases. The lowest yield stress for the stress-induced martensitic transformation of 220 MPa can be obtained in Ti-V-Al shape memory alloy by adding 3.0 at.% Sn. By optimizing 1.0 at.% Sn, the excellent ductility with a largest elongation of 42.1% can be gained in Ti-V-Al shape memory alloy, which is larger than that of the reported Ti-V-Al-based shape memory alloys. Besides, as a result of solution strengthening and grain refinement, Ti-V-Al-based shape memory alloy with 5.0 at.% Sn possesses the highest yield strength, further contributing to the excellent strain recovery characteristics with 4% fully recoverable strain.展开更多
The notion of ratio of width to length is proposed to describe the shaping feature of molten pool of twin-Arc submerged arc welding accurately, and analyze the law of molten pool variation and weld formation. The temp...The notion of ratio of width to length is proposed to describe the shaping feature of molten pool of twin-Arc submerged arc welding accurately, and analyze the law of molten pool variation and weld formation. The temperature field finite element numerical simulation model of twin arc movement is established. The loading form of twin-arc with double ellipsoid heat source is discussed. The molten pool temperature field of twin-arc submerged arc welding is calculated and analyzed under different process parameters. The law of molten pool characteristics influenced by the welding speed, current and voltage of twin-arc submerged arc welding parameters is analyzed. The relation between shaping feature of molten pool and weld formation is discussed according to the ratio of width to length. The results manifested that the width to length ratio of weld pool decreases with the improvement of welding speed, which result in gene- ration of weld defects. The width to length ratio of weld pool is increased by adjusting the proportion of the current, voltage and the distance of the two arcs, which avoids the generation of weld defects.展开更多
An efficient algorithm for facial features extractions is proposed. The facial features we segment are the two eyes, nose and mouth. The algorithm is based on an improved Gabor wavelets edge detector, morphological ap...An efficient algorithm for facial features extractions is proposed. The facial features we segment are the two eyes, nose and mouth. The algorithm is based on an improved Gabor wavelets edge detector, morphological approach to detect the face region and facial features regions, and an improved T-shape face mask to locate the extract location of facial features. The experimental results show that the proposed method is robust against facial expression, illumination, and can be also effective if the person wearing glasses, and so on.展开更多
基金National Key Research and Development Program of China(2022YFC3502302)National Natural Science Foundation of China(82074580)Graduate Research Innovation Program of Jiangsu Province(KYCX23_2078).
文摘Objective To construct a precise model for identifying traditional Chinese medicine(TCM)constitutions;thereby offering optimized guidance for clinical diagnosis and treatment plan-ning;and ultimately enhancing medical efficiency and treatment outcomes.Methods First;TCM full-body inspection data acquisition equipment was employed to col-lect full-body standing images of healthy people;from which the constitutions were labelled and defined in accordance with the Constitution in Chinese Medicine Questionnaire(CCMQ);and a dataset encompassing labelled constitutions was constructed.Second;heat-suppres-sion valve(HSV)color space and improved local binary patterns(LBP)algorithm were lever-aged for the extraction of features such as facial complexion and body shape.In addition;a dual-branch deep network was employed to collect deep features from the full-body standing images.Last;the random forest(RF)algorithm was utilized to learn the extracted multifea-tures;which were subsequently employed to establish a TCM constitution identification mod-el.Accuracy;precision;and F1 score were the three measures selected to assess the perfor-mance of the model.Results It was found that the accuracy;precision;and F1 score of the proposed model based on multifeatures for identifying TCM constitutions were 0.842;0.868;and 0.790;respectively.In comparison with the identification models that encompass a single feature;either a single facial complexion feature;a body shape feature;or deep features;the accuracy of the model that incorporating all the aforementioned features was elevated by 0.105;0.105;and 0.079;the precision increased by 0.164;0.164;and 0.211;and the F1 score rose by 0.071;0.071;and 0.084;respectively.Conclusion The research findings affirmed the viability of the proposed model;which incor-porated multifeatures;including the facial complexion feature;the body shape feature;and the deep feature.In addition;by employing the proposed model;the objectification and intel-ligence of identifying constitutions in TCM practices could be optimized.
基金Supported by the Centre for Digital Entertainment at Bournemouth University by the UK Engineering and Physical Sciences Research Council(EPSRC)EP/L016540/1 and Humain Ltd.
文摘Background Deep 3D morphable models(deep 3DMMs)play an essential role in computer vision.They are used in facial synthesis,compression,reconstruction and animation,avatar creation,virtual try-on,facial recognition systems and medical imaging.These applications require high spatial and perceptual quality of synthesised meshes.Despite their significance,these models have not been compared with different mesh representations and evaluated jointly with point-wise distance and perceptual metrics.Methods We compare the influence of different mesh representation features to various deep 3DMMs on spatial and perceptual fidelity of the reconstructed meshes.This paper proves the hypothesis that building deep 3DMMs from meshes represented with global representations leads to lower spatial reconstruction error measured with L_(1) and L_(2) norm metrics and underperforms on perceptual metrics.In contrast,using differential mesh representations which describe differential surface properties yields lower perceptual FMPD and DAME and higher spatial fidelity error.The influence of mesh feature normalisation and standardisation is also compared and analysed from perceptual and spatial fidelity perspectives.Results The results presented in this paper provide guidance in selecting mesh representations to build deep 3DMMs accordingly to spatial and perceptual quality objectives and propose combinations of mesh representations and deep 3DMMs which improve either perceptual or spatial fidelity of existing methods.
文摘In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resolution,single viewpoint,and occlusion.Different from the existing works predicting symmetry from the complete shape,we propose a learning approach for symmetry predic-tion based on a single RGB-D image.Instead of directly predicting the symmetry from incomplete shapes,our method consists of two modules,i.e.,the multi-mod-al feature fusion module and the detection-by-reconstruction module.Firstly,we build a channel-transformer network(CTN)to extract cross-fusion features from the RGB-D as the multi-modal feature fusion module,which helps us aggregate features from the color and the depth separately.Then,our self-reconstruction net-work based on a 3D variational auto-encoder(3D-VAE)takes the global geo-metric features as input,followed by a prediction symmetry network to detect the symmetry.Our experiments are conducted on three public datasets:ShapeNet,YCB,and ScanNet,we demonstrate that our method can produce reliable and accurate results.
基金The National Natural Science Foundation of China(No60271033)
文摘A new active shape models (ASMs) was presented, which is driven by scale invariant feature transform (SIFT) local descriptor instead of normalizing first order derivative profiles in the original formulation, to segment lung fields from chest radiographs. The modified SIFT local descriptor, more distinctive than the general intensity and gradient features, is used to characterize the image features in the vicinity of each pixel at each resolution level during the segmentation optimization procedure. Experimental results show that the proposed method is more robust and accurate than the original ASMs in terms of an average overlap percentage and average contour distance in segmenting the lung fields from an available public database.
基金the National Natural Science Foundation of China (60303029)
文摘The image shape feature can be described by the image Zernike moments. In this paper, we points out the problem that the high dimension image Zernike moments shape feature vector can describe more detail of the original image but has too many elements making trouble for the next image analysis phases. Then the low dimension image Zernike moments shape feature vector should be improved and optimized to describe more detail of the original image. So the optimization algorithm based on evolutionary computation is designed and implemented in this paper to solve this problem. The experimental results demonstrate the feasibility of the optimization algorithm.
文摘Optical microscopy is commonly used for cancer cell detection. Focusing on carcinoma cell identification via optical microscopy, a proof-of-concept study was performed at Laboratory of Design, Optimization and Modeling (LCOMS) to determine the grade of cancer cells. This paper focuses on three types of abnormal cells;namely, Benign Hyperplasia (BH), Intraepithelial Neoplasia (IN), which is a precursor state for cancer, and Carcinoma (Ca), which corresponds to abnormal tissue proliferation cancer. These types of cells were used to assess the efficiency of using shape features to identify carcinoma cells. A comparative study based on performance indicator concludes that three features, Area, Xor-Convex, and Solidity, were found to be effective in identifying the Carcinoma grade of cancer cells.
基金Project(60873010)supported by the National Natural Science Foundation of ChinaProject supported by the Doctor Startup Foundation of Shenyang University of Technology,China
文摘A modified Fourier descriptor was presented. Information from a local space can be used more efficiently. After the boundary pixel set of an object was computed, centroid distance approach was used to compute shape signature in the local space. A pair of shape signature and boundary pixel gray was used as a point in a feature space. Then, Fourier transform was used for composition of point information in the feature space so that the shape features could be computed. It is proved theoretically that the shape features from modified Fourier descriptors are invariant to translation, rotation, scaling, and change of start point. It is also testified by measuring the retrieval performance of the systems that the shape features from modified Fourier oescriptors are more discriminative than those from other Fourier descriptors.
文摘Active Shape Model (ASM) is a powerful statistical tool to extract the facial features of a face image under frontal view. It mainly relies on Principle Component Analysis (PCA) to statistically model the variability in the training set of example shapes. Independent Component Analysis (ICA) has been proven to be more efficient to extract face features than PCA. In this paper, we combine the PCA and ICA by the consecutive strategy to form a novel ASM. Firstly, an initial model, which shows the global shape variability in the training set, is generated by the PCA-based ASM. And then, the final shape model, which contains more local characters, is established by the ICA-based ASM. Experimental results verify that the accuracy of facial feature extraction is statistically significantly improved by applying the ICA modes after the PCA modes.
基金Project (Nos. 60302012 60202002) supported by the NationaNatural Science Foundation of China and the Research GrantCouncil of the Hong Kong Special Administrative Region (NoPolyU 5119.01E) China
文摘Flower image retrieval is a very important step for computer-aided plant species recognition. In this paper, we propose an efficient segmentation method based on color clustering and domain knowledge to extract flower regions from flower images. For flower retrieval, we use the color histogram of a flower region to characterize the color features of flower and two shape-based features sets, Centroid-Contour Distance (CCD) and Angle Code Histogram (ACH), to characterize the shape features of a flower contour. Experimental results showed that our flower region extraction method based on color clustering and domain knowledge can produce accurate flower regions. Flower retrieval results on a database of 885 flower images collected from 14 plant species showed that our Region-of-Interest (ROI) based retrieval approach using both color and shape features can perform better than a method based on the global color histogram proposed by Swain and Ballard (1991) and a method based on domain knowledge-driven segmentation and color names proposed by Das et al.(1999).
基金financial support from the National Natural Science Foundation of China(Nos.52101231,52101232 and 51871079)the Science Fund of Shandong Laboratory of Advanced Materials and Green Manufacturing(Yantai)(No.AMGM2021F09)+1 种基金the Natural Science Foundation of Shandong Province,China(No.ZR2021QE044)the Gansu Province Science and Technology Foundation for Youths(No.21JR7RA088).
文摘In the present study, it is expected to tailor the microstructural features, martensitic transformation temperatures and mechanical properties of Ti-V-Al shape memory alloys through adding Sn alloying elements, which further expands their applications. Sn addition results in the monotonous rising of average valence electron number (e/a). In proportion, the single α″ martensite phase directly evolves into merely β parent phase in present Ti-V-Al-based shape memory alloys, as Sn content increases from 0.5 to 5.0 at.%. Meanwhile, Sn addition causes the reduction in the grain size. Combined with transmission electron microscopy (TEM) observation and d electron theory analysis, it can be speculated that Sn addition can suppress the precipitation of ω phase. With increasing Sn content, fracture strength invariably decreases from 962 to 792 MPa, whereas the yield strength firstly decreases and then increases. The lowest yield stress for the stress-induced martensitic transformation of 220 MPa can be obtained in Ti-V-Al shape memory alloy by adding 3.0 at.% Sn. By optimizing 1.0 at.% Sn, the excellent ductility with a largest elongation of 42.1% can be gained in Ti-V-Al shape memory alloy, which is larger than that of the reported Ti-V-Al-based shape memory alloys. Besides, as a result of solution strengthening and grain refinement, Ti-V-Al-based shape memory alloy with 5.0 at.% Sn possesses the highest yield strength, further contributing to the excellent strain recovery characteristics with 4% fully recoverable strain.
文摘The notion of ratio of width to length is proposed to describe the shaping feature of molten pool of twin-Arc submerged arc welding accurately, and analyze the law of molten pool variation and weld formation. The temperature field finite element numerical simulation model of twin arc movement is established. The loading form of twin-arc with double ellipsoid heat source is discussed. The molten pool temperature field of twin-arc submerged arc welding is calculated and analyzed under different process parameters. The law of molten pool characteristics influenced by the welding speed, current and voltage of twin-arc submerged arc welding parameters is analyzed. The relation between shaping feature of molten pool and weld formation is discussed according to the ratio of width to length. The results manifested that the width to length ratio of weld pool decreases with the improvement of welding speed, which result in gene- ration of weld defects. The width to length ratio of weld pool is increased by adjusting the proportion of the current, voltage and the distance of the two arcs, which avoids the generation of weld defects.
基金Sponsored by the National Natural Science Foundation of China (60772066)
文摘An efficient algorithm for facial features extractions is proposed. The facial features we segment are the two eyes, nose and mouth. The algorithm is based on an improved Gabor wavelets edge detector, morphological approach to detect the face region and facial features regions, and an improved T-shape face mask to locate the extract location of facial features. The experimental results show that the proposed method is robust against facial expression, illumination, and can be also effective if the person wearing glasses, and so on.