Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we al...Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we also show its non-relativistic limit.展开更多
This article puts forward a general shape invariant potential, which includes the translational shape invariant potential and scaling shape invariant potential as two particular cases, and derives the set of linear di...This article puts forward a general shape invariant potential, which includes the translational shape invariant potential and scaling shape invariant potential as two particular cases, and derives the set of linear differential equations for obtaining general solutions of the generalized shape invariance condition.展开更多
We propose a six-parameter exponential-type potential (SPEP), which has been shown to be a shape-invariant potential with a translation of parameters. For this reducible potential, the exact energy levels are obtained...We propose a six-parameter exponential-type potential (SPEP), which has been shown to be a shape-invariant potential with a translation of parameters. For this reducible potential, the exact energy levels are obtained byusing the supersymmetric shape invariance technique. Choosing appropriate parameters, four classes of exponential-typepotentials and their exact energy spectra are reduced from the SPEP and a general energy level formula, respectively.Each class shows the identity except for the different definitions of parameters.展开更多
The study of physical systems endowed with a position-dependent mass (PDM) remains a fundamental issue of quantum mechanics. In this paper we use a new approach, recently developed by us for building the quantum kinet...The study of physical systems endowed with a position-dependent mass (PDM) remains a fundamental issue of quantum mechanics. In this paper we use a new approach, recently developed by us for building the quantum kinetic energy operator (KEO) within the Schrodinger equation, in order to construct a new class of exactly solvable models with a position varying mass, presenting a harmonic-oscillator-like spectrum. To do so we utilize the formalism of supersymmetric quantum mechanics (SUSY QM) along with the shape invariance condition. Recent outcomes of non-Hermitian quantum mechanics are also taken into account.展开更多
The spin-weighted spheroidal equation in the case of s = 1/2 is thoroughly studied by using the perturbation method from the supersymmetric quantum mechanics. The first-five terms of the superpotential in the series o...The spin-weighted spheroidal equation in the case of s = 1/2 is thoroughly studied by using the perturbation method from the supersymmetric quantum mechanics. The first-five terms of the superpotential in the series of parameter β are given. The general form for the n-th term of the superpotential is also obtained, which could also be derived from the previous terms Wk, k 〈 n. From these results, it is easy to obtain the ground eigenfunction of the equation. Furthermore, the shape-invariance property in the series of parameter β is investigated and is proven to be kept. This nice property guarantees that the excited eigenfunctions in the series form can be obtained from the ground eigenfunction by using the method from the supersymmetric quantum mechanics. We show the perturbation method in supersymmetric quantum mechanics could completely solve the spin-weight spheroidal wave equations in the series form of the small parameter β.展开更多
In this paper we solve spin-weighted spheroidal wave equations through super-symmetric quantum mechanics with a different expression of the super-potential. We use the shape invariance property to compute the "excite...In this paper we solve spin-weighted spheroidal wave equations through super-symmetric quantum mechanics with a different expression of the super-potential. We use the shape invariance property to compute the "excited" eigenvalues and eigenfunctions. The results are beneficial to researchers for understanding the properties of the spin-weighted spheroidal wave more deeply, especially its integrability.展开更多
A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of th...A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of the system which are obtained using the concepts of supersymmetric quantum mechanics and the property of shape invariance. In order to exemplify the general results and to analyze the properties of the coherent states, several examples have been considered.展开更多
文摘Based on the shape invariance property we obtain exact solutions of the three-dimensional relativistic Klein Gordon equation for a charged particle moving in the presence of a certain varying magnetic field, and we also show its non-relativistic limit.
文摘This article puts forward a general shape invariant potential, which includes the translational shape invariant potential and scaling shape invariant potential as two particular cases, and derives the set of linear differential equations for obtaining general solutions of the generalized shape invariance condition.
文摘We propose a six-parameter exponential-type potential (SPEP), which has been shown to be a shape-invariant potential with a translation of parameters. For this reducible potential, the exact energy levels are obtained byusing the supersymmetric shape invariance technique. Choosing appropriate parameters, four classes of exponential-typepotentials and their exact energy spectra are reduced from the SPEP and a general energy level formula, respectively.Each class shows the identity except for the different definitions of parameters.
基金The authors gratefully acknowledge Qassim University,represented by the Deanship of Scienti c Research,on the material support for this research under the number(1671-ALRASSCAC-2016-1-12-S)during the academic year 1437 AH/2016 AD.
文摘The study of physical systems endowed with a position-dependent mass (PDM) remains a fundamental issue of quantum mechanics. In this paper we use a new approach, recently developed by us for building the quantum kinetic energy operator (KEO) within the Schrodinger equation, in order to construct a new class of exactly solvable models with a position varying mass, presenting a harmonic-oscillator-like spectrum. To do so we utilize the formalism of supersymmetric quantum mechanics (SUSY QM) along with the shape invariance condition. Recent outcomes of non-Hermitian quantum mechanics are also taken into account.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.10875018 and 10773002)
文摘The spin-weighted spheroidal equation in the case of s = 1/2 is thoroughly studied by using the perturbation method from the supersymmetric quantum mechanics. The first-five terms of the superpotential in the series of parameter β are given. The general form for the n-th term of the superpotential is also obtained, which could also be derived from the previous terms Wk, k 〈 n. From these results, it is easy to obtain the ground eigenfunction of the equation. Furthermore, the shape-invariance property in the series of parameter β is investigated and is proven to be kept. This nice property guarantees that the excited eigenfunctions in the series form can be obtained from the ground eigenfunction by using the method from the supersymmetric quantum mechanics. We show the perturbation method in supersymmetric quantum mechanics could completely solve the spin-weight spheroidal wave equations in the series form of the small parameter β.
基金supported by the National Natural Science Foundation of China (Grant No. 10875018)
文摘In this paper we solve spin-weighted spheroidal wave equations through super-symmetric quantum mechanics with a different expression of the super-potential. We use the shape invariance property to compute the "excited" eigenvalues and eigenfunctions. The results are beneficial to researchers for understanding the properties of the spin-weighted spheroidal wave more deeply, especially its integrability.
文摘A generalized scheme for the construction of coherent states in the context of position-dependent effective mass systems has been presented. This formalism is based on the ladder operators and associated algebra of the system which are obtained using the concepts of supersymmetric quantum mechanics and the property of shape invariance. In order to exemplify the general results and to analyze the properties of the coherent states, several examples have been considered.