A general solution is obtained to a canonical problem of the reflection and refraction of an arbitrary shaped beam by using a uniaxially anisotropic chiral slab.The reflected,internal as well as refracted shaped beams...A general solution is obtained to a canonical problem of the reflection and refraction of an arbitrary shaped beam by using a uniaxially anisotropic chiral slab.The reflected,internal as well as refracted shaped beams are expanded in terms of cylindrical vector wave functions,and the expansion coefficients are determined by using the boundary conditions and method of moments procedure.As two typical examples,the normalized field intensity distributions are evaluated for a fundamental Gaussian beam and Hermite-Gaussian beam,and some propagation properties,especially the negative refraction phenomenon,are discussed briefly.展开更多
In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other ...In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other cancers.The specifications for designing an epithermal beam are primarily based on the IAEA-TECODC-1223 report,issued in 2001 for reactor neutron sources.Based on this report,the latest perspectives and clinical requirements,we designed an ABNS capable of adjusting the average neutron beam energy.The design was based on a 2.8 MeV,20 mA proton beam bombarding a lithium target to produce neutrons that were subsequently moderated and tuned through a tunable beam shaping assembly(BSA)which can modify the thicknesses and materials of the coin-shaped moderators,back reflectors,filters,and collimators.The simulation results demonstrated that epithermal neutron beams for deep seated tumor treatment,which were generated by utilizing magnesium fluoride with lengths ranging between 28 and 36 cm as the moderator,possessed a treatment depth of 5.6 cm although the neutron flux peak shifts from 4.5 to 1.0 keV.When utilizing a thinner moderator,a less accelerated beam power can meet the treatment requirements.However,higher powers reduced the treatment time.In contrast,employing a thick moderator can reduce the skin dose.In scenarios that required relatively low energy neutron beams,the removal of the thermal neutron filter can raise the thermal neutron flux at the beam port.And the depth of the dose rate peak could be adjusted between 0.25 and 2.20 cm by combining magnesium fluoride and polyethylene coins of different thicknesses.Hence,this device has a better adaptability for the treatment of superficial tumors.Overall,the tunable BSA provides greater flexibility for clinical treatment than common BSA designs that can only adjust the port size.展开更多
The generation of terahertz(THz) waves by focusing a femtosecond pulsed laser beam at a distance is able to overcome the strong absorption properties of air and has rapidly attracted the attention of industry. However...The generation of terahertz(THz) waves by focusing a femtosecond pulsed laser beam at a distance is able to overcome the strong absorption properties of air and has rapidly attracted the attention of industry. However, the poor directionality of the THz wave radiation generated by this method is not conducive to THz wave applications. By controlling the morphology of the ultrafast laser-excited plasma filament and its electron density distribution through coherent beam combining technology, we achieve direct THz beam shaping and are able to obtain THz wave radiation of Gaussian or arbitrary transverse distribution. The novel experimental approach proposed in this paper opens up the research field of direct THz wave shaping using plasma. Moreover, it innovates multi-parameter convergence algorithms and, by doing so, has the potential to find beam patterns with higher energy conversion efficiency and break the energy limit of THz waves emitted by lasers at high power.展开更多
This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 inn...This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.展开更多
A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program an...A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program and to speed up computation. This approach uses two crossover operators that can over-come premature convergence and the dependence of convergence on initial population. Simulation results show that this method is capable of synthesizing complex pattern shapes of planar arrays with arbitrary ge-ometry and can realize good sidelobe suppression at the same time.展开更多
Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the f...Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.展开更多
Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optica...Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.展开更多
To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The sc...To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.展开更多
A new controllable laser beam shaping technique is demonstrated, where a magnetic fluid-based liquid deformable mirror is proposed to redistribute the laser phase profile and thus change the propagation property of th...A new controllable laser beam shaping technique is demonstrated, where a magnetic fluid-based liquid deformable mirror is proposed to redistribute the laser phase profile and thus change the propagation property of the beam. The mirror is driven by an inner miniature actuator array along with a large outer actuator. The inner actuator array is used for deforming the magnetic fluid surface, while the outer actuator is used to linearize the fluid surface response and amplify the magnitude of the deflection. In comparison to other laser beam shaping techniques, this technique offers the advantages such as simplicity, low cost, large shape deformation, and high adaptability. Based on a fabricated prototype of the liquid deformable mirror, an experimental AO system was set up to produce a desired conical surface shape that shaped the incident beam into a Bessel beam. The experimental results show the effectiveness of the proposed technique for laser beam shaping.展开更多
In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm ca...In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm can successfully achieve to design DOEs for beam shaping. Compared with conventional algorithm, this algorithm can provide faster convergence, more powerful ability to overcome local minimum problem and better shaping quality. By computer simulation, the result has shown that the DOEs designed by this algorithm has snch advantages as high uniformity at the main lobe, low profile error and steep edge.展开更多
A reflective faceted structure is proposed to reshaping an incoherent light beam into two focalized spots-To obtain the desired irradiance distribution on a detector,custom optimization function is written,and the two...A reflective faceted structure is proposed to reshaping an incoherent light beam into two focalized spots-To obtain the desired irradiance distribution on a detector,custom optimization function is written,and the two dimensional tilt angles of each facet are optimized automatically in a pure non-sequential mode in Zemax OpticStudio 16.The result is also confirmed inside LightTools&2 from Synopsys.For measuring the quality of the optimization result in the case of two spots focalization,four factors including efficiency on the detector,uniformity,the root mean square error and the correlation coefficient are calculated.These four factors are used to evaluate the influence of several parameters on the irradiance distribution.These parameters include the incidence angle,the divergence angle,the facet size,the source type and the resolution of the facet angular positions.Finally,an analysis of those parameters is made and the performance of this type of component is demonstrated.展开更多
An optimized setup for fiber optic injection of a kilowatt peak power laser diode stack emitting in the SWIR spectral range is proposed. Starting from a fast axis collimated (FAC) and slow axis collimated (SAC) 15 bar...An optimized setup for fiber optic injection of a kilowatt peak power laser diode stack emitting in the SWIR spectral range is proposed. Starting from a fast axis collimated (FAC) and slow axis collimated (SAC) 15 bars, 19 emitters off the shelf laser diode stack, the beam is transformed using spatial beam combining and polarization coupling. Both techniques integrated in a compact design enable to couple the kilowatt level beam into a standard 600 μm core, 0.22 numerical aperture (NA) multimode optical fiber. An application in the field of long range SWIR laser illuminator for gated viewing is presented. A comparison between two illuminators is realized both based on the same laser diode stack but one using beam parameter product (BPP) reduction and one without. It could be demonstrated that BPP reduction is the best way for efficient, narrow divergence and compact semi-conductor based laser illuminators design and realization. The global laser illuminator efficiency could be improved by 75% for the narrowest divergences thanks to this approach.展开更多
We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combi...We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.展开更多
We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring g...We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring grooves.We also characterized the 3D beam pro¯le by using a crossshaped knife-edge fabricated on a silicon photo-detector.The size of the super-resolution dark spot in the tube is 0.32,which remains unchanged for4within the tube.This optical tube may¯nd applications in super-resolution microscopy,optical trapping and particle acceleration.展开更多
A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj.The shaping s...A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj.The shaping system corrects for gain nonuniformity and wavefront aberrations of the front-end of the system.The beam intensity profile and the wavefront at the output of the front-end were successfully improved by shaping.The beam homogeneity defined by the beam quality parameters was improved two to three times.The root-mean-square value of the wavefront was improved more than 10 times.Consequently,the shaped beam from the second preamplifier led to improvement of the beam profile at the output of the first main cryo-amplifier.The shaping system is also capable of creating nonordinary beam shapes,imprinting cross-references into the beam,or masking certain parts of the beam.展开更多
Coherent combination of laser beam is an important and challenging area of high power laser science. And how to evaluate the high power laser by coherent beam combination is a new research spot. Formulas for the radia...Coherent combination of laser beam is an important and challenging area of high power laser science. And how to evaluate the high power laser by coherent beam combination is a new research spot. Formulas for the radiated intensity distributions of coherent combined Gaussian beam array are derived via Fraunhofer scalar diffraction model by utilizing representations of the cross-spectral density of the far field. Effects of beam array numbers and separate distances etc. on far field radiated profiles are shown and analyzed. A new conception named power in the bucket of the main lobe (PIMm) is advanced to measure the beam quality of combined beams. This evaluation method is useful for efficiently determining the peak irradiance and power in the bucket for single emitting apertures of general shape.展开更多
A 3D nonlinear photonic crystal containing four parallel segments of periodicχ^((2))grating structure is fabricated employing the femtosecond laser poling of ferroelectric Ca_(0.28)Ba_(0.72)Nb_(2)O_(6) crystal.The se...A 3D nonlinear photonic crystal containing four parallel segments of periodicχ^((2))grating structure is fabricated employing the femtosecond laser poling of ferroelectric Ca_(0.28)Ba_(0.72)Nb_(2)O_(6) crystal.The second harmonic generation from this foursegment structure is studied with a fundamental Gaussian wave.By tuning the wavelength of the fundamental wave,the second harmonic varies from the Laguerre-Gaussian beam(topological charge l_(c)=1)to the higher-order Hermite-Gaussian beam and Laguerre-Gaussian again(l_(c)=−1).This effect is caused by the wavelength-dependent phase delays introduced by the four-grating structure.Our study contributes to a deeper understanding of nonlinear wave interactions in 3D nonlinear photonic crystals.It also offers new possibilities for special beam generation at new frequencies and their control.展开更多
Aiming for suppressing side-mode and spectrum broadening,a slit beam-shaping method and super-Gaussian apodization processing for femtosecond laser point-by-point(PbP)inscription technology of fiber Bragg gratings(FBG...Aiming for suppressing side-mode and spectrum broadening,a slit beam-shaping method and super-Gaussian apodization processing for femtosecond laser point-by-point(PbP)inscription technology of fiber Bragg gratings(FBGs)are reported here.High-quality FBGs,featuring narrow bandwidth of less than 0.3 nm,high reflectivity above 85%,low insertion loss(0.21 dB),and low cladding loss(0.82 dB),were obtained successfully.By a semi-automatic PbP inscription process,an array consisting of six FBGs,exhibiting almost no side-mode peaks with high suppression ability and narrow bandwidth,was fabricated along three independently developed single-mode fibers with an interval of 20 mm.展开更多
A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the...A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the voltages of the 19 actuators on the DM to reduce the difference between the target beam shape and the actual beam shape. Numerical simulations and experimental results show that within the stroke range of the DM, this technique can be well used to create the given beam intensity profiles on the focal plane.展开更多
The diffraction-limited resolution of light focused by a lens was derived in 1873 by Ernst Abbe.Later in 1952,a method to reach sub-diffraction light spots was proposed by modulating the wavefront of the focused beam....The diffraction-limited resolution of light focused by a lens was derived in 1873 by Ernst Abbe.Later in 1952,a method to reach sub-diffraction light spots was proposed by modulating the wavefront of the focused beam.In a related development,super-oscillating functions,that is,band-limited functions that locally oscillate faster than their highest Fourier component,were introduced and experimentally applied for super-resolution microscopy.Up till now,only simple Gaussian-like sub-diffraction spots were used.Here we show that the amplitude and phase profile of these sub-diffraction spots can be arbitrarily controlled.In particular,we utilize Hermite–Gauss,Laguerre–Gauss and Airy functions to structure super-oscillating beams with subdiffraction lobes.These structured beams are then used for high-resolution trapping and manipulation of nanometer-sized particles.The trapping potential provides unprecedented localization accuracy and stiffness,significantly exceeding those provided by standard diffraction-limited beams.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.61771385)the Science Foundation for Distinguished Young Scholars of Shaanxi Province,China(Grant No.2020JC-42)+1 种基金the Fund from the Science and Technology on Solid-State Laser Laboratory,China(Grant No.6142404180301)the Science and Technology Research Plan of Xi’an City,China(Grant No.GXYD14.26).
文摘A general solution is obtained to a canonical problem of the reflection and refraction of an arbitrary shaped beam by using a uniaxially anisotropic chiral slab.The reflected,internal as well as refracted shaped beams are expanded in terms of cylindrical vector wave functions,and the expansion coefficients are determined by using the boundary conditions and method of moments procedure.As two typical examples,the normalized field intensity distributions are evaluated for a fundamental Gaussian beam and Hermite-Gaussian beam,and some propagation properties,especially the negative refraction phenomenon,are discussed briefly.
基金supported by the National Nature Science Foundation of China(No.1210050454)the program of Chinese Scholarship Council(No.202106280126)。
文摘In the past decade,boron neutron capture therapy utilizing an accelerator-based neutron source(ABNS)designed primarily for producing epithermal neutrons has been implemented in the treatment of brain tumors and other cancers.The specifications for designing an epithermal beam are primarily based on the IAEA-TECODC-1223 report,issued in 2001 for reactor neutron sources.Based on this report,the latest perspectives and clinical requirements,we designed an ABNS capable of adjusting the average neutron beam energy.The design was based on a 2.8 MeV,20 mA proton beam bombarding a lithium target to produce neutrons that were subsequently moderated and tuned through a tunable beam shaping assembly(BSA)which can modify the thicknesses and materials of the coin-shaped moderators,back reflectors,filters,and collimators.The simulation results demonstrated that epithermal neutron beams for deep seated tumor treatment,which were generated by utilizing magnesium fluoride with lengths ranging between 28 and 36 cm as the moderator,possessed a treatment depth of 5.6 cm although the neutron flux peak shifts from 4.5 to 1.0 keV.When utilizing a thinner moderator,a less accelerated beam power can meet the treatment requirements.However,higher powers reduced the treatment time.In contrast,employing a thick moderator can reduce the skin dose.In scenarios that required relatively low energy neutron beams,the removal of the thermal neutron filter can raise the thermal neutron flux at the beam port.And the depth of the dose rate peak could be adjusted between 0.25 and 2.20 cm by combining magnesium fluoride and polyethylene coins of different thicknesses.Hence,this device has a better adaptability for the treatment of superficial tumors.Overall,the tunable BSA provides greater flexibility for clinical treatment than common BSA designs that can only adjust the port size.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12074272 and 61905271)the National Defense Science and Technology Innovation Special Zone Project of China (Grant No. 20-163-02-ZT-008-009-01)Guangdong Basic and Applied Basic Research Foundation (Grant No. 2020A1515011083)。
文摘The generation of terahertz(THz) waves by focusing a femtosecond pulsed laser beam at a distance is able to overcome the strong absorption properties of air and has rapidly attracted the attention of industry. However, the poor directionality of the THz wave radiation generated by this method is not conducive to THz wave applications. By controlling the morphology of the ultrafast laser-excited plasma filament and its electron density distribution through coherent beam combining technology, we achieve direct THz beam shaping and are able to obtain THz wave radiation of Gaussian or arbitrary transverse distribution. The novel experimental approach proposed in this paper opens up the research field of direct THz wave shaping using plasma. Moreover, it innovates multi-parameter convergence algorithms and, by doing so, has the potential to find beam patterns with higher energy conversion efficiency and break the energy limit of THz waves emitted by lasers at high power.
文摘This study systematically introduces the development of the world’s first full-link and full-system ground demonstration and verification system for the OMEGA space solar power satellite(SSPS).First,the OMEGA 2.0 innovation design was proposed.Second,field-coupling theoretical models of sunlight concentration,photoelectric conversion,and transmitting antennas were established,and a systematic optimization design method was proposed.Third,a beam waveform optimization methodology considering both a high beam collection efficiency and a circular stepped beam shape was proposed.Fourth,a control strategy was developed to control the condenser pointing toward the sun while maintaining the transmitting antenna toward the rectenna.Fifth,a high-efficiency heat radiator design method based on bionics and topology optimization was proposed.Sixth,a method for improving the rectenna array’s reception,rectification,and direct current(DC)power synthesis efficiencies is presented.Seventh,high-precision measurement technology for high-accuracy beam-pointing control was developed.Eighth,a smart mechanical structure was designed and developed.Finally,the developed SSPS ground demonstration and verification system has the capacity for sun tracking,a high concentration ratio,photoelectric conversion,microwave conversion and emission,microwave reception,and rectification,and thus satisfactory results were obtained.
文摘A planar array antenna with arbitrary geometry synthesis technique based on genetic algorithm is discussed. This approach avoids coding/decoding and directly works with complex numbers to simplify computing program and to speed up computation. This approach uses two crossover operators that can over-come premature convergence and the dependence of convergence on initial population. Simulation results show that this method is capable of synthesizing complex pattern shapes of planar arrays with arbitrary ge-ometry and can realize good sidelobe suppression at the same time.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61108047 and 61240057)the Program for New Century Excellent Talentsin University,China(Grant No.NCET-13-0667)the Beijing Excellent Talent Training Project,China(Grant No.2011D005007000008)
文摘Tight focusing of axially symmetric polarized vortex beams is studied numerically based on vector diffraction theory. The mathematical expressions for the focused fields are derived. Simulation results show that the focused fields and phase distributions at focus are largely influenced by both the polarization order and topological charge of the incident beams. Moreover, focal spots with flat-topped or tightly-focused patterns can be flexibly achieved by carefully choosing the polar- ization order and the topological charge, which confirms the potential of such beams in wide applications, such as optical tweezers, laser printing, lithography, and material processing.
基金Project(51475479) supported by the National Natural Science Foundation of ChinaProject(2017YFB1104800) supported by the National Key Research and Development Program of China+2 种基金Project(2016GK2098) supported by the Key Research and Development Program of Hunan Province,ChinaProject(ZZYJKT2017-07) supported by the State Key Laboratory of High Performance Complex Manufacturing,Central South University,ChinaProject(JMTZ201804) supported by the Key Laboratory for Precision&Non-traditional Machining of Ministry of Education,Dalian University of Technology,China
文摘Beam shaping is required for semiconductor lasers to achieve high optical fiber coupling efficiency in many applications.But the positioning errors on optics may reduce beam shaping effects,and then lead to low optical fiber coupling efficiency.In this work,the positioning errors models for the single emitter laser diode beam shaping system are established.Moreover,the relationships between the errors and the beam shaping effect of each shapers are analysed.Subsequently,the relationship between the errors and the optical fiber coupling efficiency is analysed.The result shows that position errors in the Z axis direction on the fast axis collimator have the greatest influence on the shaping effect,followed by the position errors in the Z axis direction on the converging lens,which should be strictly suppressed in actual operation.Besides,the position errors have a significant influence on the optical fiber coupling efficiency and need to be avoided.
基金The project supported by National Natural Science Foundation of China (No. 60572095)Research Foundation for Doctors of ZZULI
文摘To gain the tradeoff between lower sidelobe and higher power amplifiers efficiency,a transmitting beam shaping scheme with limited amplitude weight values for satellite active phased array antenna is presented. The scheme is implemented by a dual coding genetic algorithm(GA). Phase and amplitude of array weight vectors for beam shaping are encoded by real coding and finite length binary coding,respectively,which,maintaining accuracy of results,reduces the amplitude dynamic range and improves the efficiency of power amplifiers. The presented algorithm,compared with complex-coded GA,increases the convergence rate due to the search space's decrease. In order to overcome the prematurity and obtain better global optimization or quasi-global optimization,a new dual coding GA based on "species diversity retention" strategy and adaptive crossover and mutation probability are presented.
基金Project supported by the National Natural Science Foundation of China(Grant No.51675321)Shanghai Municipal Natural Science Foundation,China(Grant No.15ZR1415800)the Innovation Program of Shanghai Municipal Education Commission,China(Grant No.14ZZ092)
文摘A new controllable laser beam shaping technique is demonstrated, where a magnetic fluid-based liquid deformable mirror is proposed to redistribute the laser phase profile and thus change the propagation property of the beam. The mirror is driven by an inner miniature actuator array along with a large outer actuator. The inner actuator array is used for deforming the magnetic fluid surface, while the outer actuator is used to linearize the fluid surface response and amplify the magnitude of the deflection. In comparison to other laser beam shaping techniques, this technique offers the advantages such as simplicity, low cost, large shape deformation, and high adaptability. Based on a fabricated prototype of the liquid deformable mirror, an experimental AO system was set up to produce a desired conical surface shape that shaped the incident beam into a Bessel beam. The experimental results show the effectiveness of the proposed technique for laser beam shaping.
文摘In the Fresnel transform domain, an effective improvement to the conventional iterative algorithm for designing the diffractive optical elements (DOEs) used for spatial beam shaping has been proposed. The algorithm can successfully achieve to design DOEs for beam shaping. Compared with conventional algorithm, this algorithm can provide faster convergence, more powerful ability to overcome local minimum problem and better shaping quality. By computer simulation, the result has shown that the DOEs designed by this algorithm has snch advantages as high uniformity at the main lobe, low profile error and steep edge.
基金supported by Natural Science Foundation of Shandong Province,China(No.ZR2019BF033).
文摘A reflective faceted structure is proposed to reshaping an incoherent light beam into two focalized spots-To obtain the desired irradiance distribution on a detector,custom optimization function is written,and the two dimensional tilt angles of each facet are optimized automatically in a pure non-sequential mode in Zemax OpticStudio 16.The result is also confirmed inside LightTools&2 from Synopsys.For measuring the quality of the optimization result in the case of two spots focalization,four factors including efficiency on the detector,uniformity,the root mean square error and the correlation coefficient are calculated.These four factors are used to evaluate the influence of several parameters on the irradiance distribution.These parameters include the incidence angle,the divergence angle,the facet size,the source type and the resolution of the facet angular positions.Finally,an analysis of those parameters is made and the performance of this type of component is demonstrated.
文摘An optimized setup for fiber optic injection of a kilowatt peak power laser diode stack emitting in the SWIR spectral range is proposed. Starting from a fast axis collimated (FAC) and slow axis collimated (SAC) 15 bars, 19 emitters off the shelf laser diode stack, the beam is transformed using spatial beam combining and polarization coupling. Both techniques integrated in a compact design enable to couple the kilowatt level beam into a standard 600 μm core, 0.22 numerical aperture (NA) multimode optical fiber. An application in the field of long range SWIR laser illuminator for gated viewing is presented. A comparison between two illuminators is realized both based on the same laser diode stack but one using beam parameter product (BPP) reduction and one without. It could be demonstrated that BPP reduction is the best way for efficient, narrow divergence and compact semi-conductor based laser illuminators design and realization. The global laser illuminator efficiency could be improved by 75% for the narrowest divergences thanks to this approach.
基金supported in part by the National Natural Science Foundation of China(Nos.91750202,11530046,and 11474156)the National Key R&D Program of China(No.2017YFA0303700)+1 种基金the Collaborative Innovation Center of Advanced Microstructures of Chinathe Collaborative Innovation Center of Solid-State Lighting and Energy-Saving Electronics of China
文摘We propose and simulate a method for generating a three-dimensional (3D) optical cage in the vicinity of focus by focusing a double-ring shaped radially and azimuthally polarized beam. Our study shows that the combination of an inner ring with an azimuthally polarized field and an outer ring with a radially polarized field and a phase factor can produce an optical cage with a dark region enclosed by higher intensity. The shape of the cage can be tailored by appropriately adjusting the parameters of double-mode beams. Furthermore, multiple 3D optical cages can be realized by applying the shift theorem of the Fourier transform and macro-pixel sampling algorithm to a double-ring shaped radially and azimuthally polarized beam.
文摘We generated a super-resolution optical tube by tightly focusing a binary phase modulated azimuthally polarized laser beam.The binary phase modulation is achieved by a glass substrate with multi-belt concentric ring grooves.We also characterized the 3D beam pro¯le by using a crossshaped knife-edge fabricated on a silicon photo-detector.The size of the super-resolution dark spot in the tube is 0.32,which remains unchanged for4within the tube.This optical tube may¯nd applications in super-resolution microscopy,optical trapping and particle acceleration.
文摘A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj.The shaping system corrects for gain nonuniformity and wavefront aberrations of the front-end of the system.The beam intensity profile and the wavefront at the output of the front-end were successfully improved by shaping.The beam homogeneity defined by the beam quality parameters was improved two to three times.The root-mean-square value of the wavefront was improved more than 10 times.Consequently,the shaped beam from the second preamplifier led to improvement of the beam profile at the output of the first main cryo-amplifier.The shaping system is also capable of creating nonordinary beam shapes,imprinting cross-references into the beam,or masking certain parts of the beam.
文摘Coherent combination of laser beam is an important and challenging area of high power laser science. And how to evaluate the high power laser by coherent beam combination is a new research spot. Formulas for the radiated intensity distributions of coherent combined Gaussian beam array are derived via Fraunhofer scalar diffraction model by utilizing representations of the cross-spectral density of the far field. Effects of beam array numbers and separate distances etc. on far field radiated profiles are shown and analyzed. A new conception named power in the bucket of the main lobe (PIMm) is advanced to measure the beam quality of combined beams. This evaluation method is useful for efficiently determining the peak irradiance and power in the bucket for single emitting apertures of general shape.
基金supported by the National Natural Science Foundation of China(Nos.12274248,62275136,and 12361141815)the Natural Science Foundation of Zhejiang Province(No.LY22F050009)the K.C.Wong Magna Fund of Ningbo University.
文摘A 3D nonlinear photonic crystal containing four parallel segments of periodicχ^((2))grating structure is fabricated employing the femtosecond laser poling of ferroelectric Ca_(0.28)Ba_(0.72)Nb_(2)O_(6) crystal.The second harmonic generation from this foursegment structure is studied with a fundamental Gaussian wave.By tuning the wavelength of the fundamental wave,the second harmonic varies from the Laguerre-Gaussian beam(topological charge l_(c)=1)to the higher-order Hermite-Gaussian beam and Laguerre-Gaussian again(l_(c)=−1).This effect is caused by the wavelength-dependent phase delays introduced by the four-grating structure.Our study contributes to a deeper understanding of nonlinear wave interactions in 3D nonlinear photonic crystals.It also offers new possibilities for special beam generation at new frequencies and their control.
基金supported by the Sichuan Provincial Natural Science Foundation(No.23NSFSC4751)。
文摘Aiming for suppressing side-mode and spectrum broadening,a slit beam-shaping method and super-Gaussian apodization processing for femtosecond laser point-by-point(PbP)inscription technology of fiber Bragg gratings(FBGs)are reported here.High-quality FBGs,featuring narrow bandwidth of less than 0.3 nm,high reflectivity above 85%,low insertion loss(0.21 dB),and low cladding loss(0.82 dB),were obtained successfully.By a semi-automatic PbP inscription process,an array consisting of six FBGs,exhibiting almost no side-mode peaks with high suppression ability and narrow bandwidth,was fabricated along three independently developed single-mode fibers with an interval of 20 mm.
基金the National"863"Project under Grant No.Aosk003.
文摘A new adaptive beam intensity shaping technique based on the combination of a 19-element piezo-electricity deformable mirror (DM) and a global genetic algorithm is presented. This technique can adaptively adjust the voltages of the 19 actuators on the DM to reduce the difference between the target beam shape and the actual beam shape. Numerical simulations and experimental results show that within the stroke range of the DM, this technique can be well used to create the given beam intensity profiles on the focal plane.
基金the Israel Science Foundation(ISF)Grant No.(1310/13)Center for Nanoscience and Nanotechnology,Tel Aviv University for their financial support.
文摘The diffraction-limited resolution of light focused by a lens was derived in 1873 by Ernst Abbe.Later in 1952,a method to reach sub-diffraction light spots was proposed by modulating the wavefront of the focused beam.In a related development,super-oscillating functions,that is,band-limited functions that locally oscillate faster than their highest Fourier component,were introduced and experimentally applied for super-resolution microscopy.Up till now,only simple Gaussian-like sub-diffraction spots were used.Here we show that the amplitude and phase profile of these sub-diffraction spots can be arbitrarily controlled.In particular,we utilize Hermite–Gauss,Laguerre–Gauss and Airy functions to structure super-oscillating beams with subdiffraction lobes.These structured beams are then used for high-resolution trapping and manipulation of nanometer-sized particles.The trapping potential provides unprecedented localization accuracy and stiffness,significantly exceeding those provided by standard diffraction-limited beams.