Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Re...Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Research Foundation (DFG),an investment casting process to produce 3-dimensional functional surfaces down to a structural size of 1μm on near-net-shape-casting parts has been developed.The common way to realize functional microstructures on metallic surfaces is to use laser ablation,electro discharge machining or micro milling.The handicap of these processes is their limited productivity.The approach of this project to raise the efficiency is to use the investment casting process to replicate microstructured surfaces by moulding from a laser-microstructured grand master pattern.The main research objective deals with the investigation of the single process steps of the investment casting process with regard to the moulding accuracy.Actual results concerning making of the wax pattern,suitability of ceramic mould and core materials for casting of an AlSi7Mg0.3 alloy as well as the knock-out behavior of the shells are presented.By using of the example of an intake manifold of a gasoline race car engine,a technical shark skin surface has been realized to reduce the drag of the intake air.The intake manifold consists of an air-restrictor with a defined inner diameter which is microstructured with technical shark skin riblets.For this reason the inner diameter cannot be drilled after casting and demands a very high accuracy of the casting part.A technology for the fabrication and demoulding of accurate microstructured castings are shown.Shrinkage factors of different moulding steps of the macroscopic casting part as well as the microscopic riblet structure have been examined as well.展开更多
It is well known that shark skin surface can effectively inhabit the occurrence of turbulence and reduce the wall friction, but in order to understand the mechanism of drag reduction, one has to solve the problem of t...It is well known that shark skin surface can effectively inhabit the occurrence of turbulence and reduce the wall friction, but in order to understand the mechanism of drag reduction, one has to solve the problem of the turbulent flow on grooved-scale surface, and in that respect, the direct numerical simulation is an important tool. In this article, based on the real biological shark skin, the model of real shark skin is built through high-accurate scanning and data processing. The turbulent flow on a real shark skin is comprehensively simulated, and based on the simulation, the drag reduction mechanism is discussed. In addition, in order to validate the drag-reducing effect of shark skin surface, actual experiments were carried out in water tunnel, and the experimental results are approximately consistent with the numerical simulation.展开更多
Windbreak fences in open and urban areas can be used to effectively reduce the wind velocity. In this paper we examine how the geometrical shape of the windbreak fence can optimally mitigate wind velocity. We propose ...Windbreak fences in open and urban areas can be used to effectively reduce the wind velocity. In this paper we examine how the geometrical shape of the windbreak fence can optimally mitigate wind velocity. We propose an approach for windbreak fence design based on a bionic parametric model of the shark skin denticle geometry, which improves the reduction of the wind velocity around and behind the windbreak fences. The generative model was used to estimate improvements by variations in the parameters of the fence panel's geometrical shape, inspired by shark skin denticles. The results of the Computational Fluid Dynamics (CFD) analysis indicates that the fence surface inspired by shark skin performs much better than both flat and cor- rugated surfaces. Taking into account the complex geometry of the surface inspired by shark skin denticles, we propose a fab- rication process using an expanded polystyrene foam (EPS) material, created using an industrial robot arm with a hot-wire tool. Creating EPS moulds for the shark skin denticle panels allows for a richer variety material to be used in the final design, leading both to higher efficiency and a more attractive design.展开更多
Direct replication of creatural scarfskins to form biomimetic surfaces with relatively vivid morphology is a new attempt of the bio-replicated forming technology at animal body. Taking shark skins as the replication t...Direct replication of creatural scarfskins to form biomimetic surfaces with relatively vivid morphology is a new attempt of the bio-replicated forming technology at animal body. Taking shark skins as the replication templates, and the micro-embossing and micro-molding as the material forming methods, the micro-replicating technology of the outward morphology on shark skins was demonstrated. The preliminary analysis on replication precision indicates that the bio-replicated forming technology can replicate the outward morphology of the shark scales with good precision, which validates the application of the bio-replicated forming technology in the direct morphology replication of the firm creatural scarfskins.展开更多
Nano-long chains were grafted over the replicated micro-grooves of shark skin in a novel attempt to replicate bio-synthetic drag reduction structure with high precision through synthetic bio-replication. Pre-treated s...Nano-long chains were grafted over the replicated micro-grooves of shark skin in a novel attempt to replicate bio-synthetic drag reduction structure with high precision through synthetic bio-replication. Pre-treated shark skin was used as casting template to prepare a flexible female die of silicone rubber by soft die formation. A waterborne epoxy resin was then used to graft long-chains of drag reduction agent and prepare a synthetic drag reduction shark skin with nano-long chain drag reduction interface and lifelike micro-grooves. Replication precision analysis shows that this technology could replicate the complicated three-dimensional morphology of a biological drag reduction surface with high precision. Drag reduction experiments show that the material had an excellent synthetic drag reduction effect, with a maximal drag reduction rate of up to 24.6% over the velocities tested.展开更多
On the investigation of biomimetic drag-reducing surface, direct replication of the firm scarfskins on low-resistance creatures to form biomimetic drag-reducing surfaces with relatively vivid morphology relative to th...On the investigation of biomimetic drag-reducing surface, direct replication of the firm scarfskins on low-resistance creatures to form biomimetic drag-reducing surfaces with relatively vivid morphology relative to the living prototype is a new attempt of the bio-replicated forming technology.Taking shark skin as the bio-replication template, the hot embossing method was applied to the microreplication of its outward morphology. Furthermore, the skins were jointed together to form the drag-reducing surface in large area. The results of the resistance measurements in a water tunnel according to the flat-plate sample pieces have shown that the biomimetic shark-skin coating fabricated by the bio-replicated forming method has significant drag reduction effect, and that the drag reduction efficiency reached 8.25% in the test conditions.展开更多
Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected a...Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing.Methods: Shark skin collagen(SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for p H. A shark skin collagen sponge(SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane(PU) film(SSCS+PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS+PU on the healing of seawaterimmersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawaterimmersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3 rd day group, 5 th day group, 7 th day group and 12 th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS+PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze(GZ)+PU group, chitosan(CS)+PU group and SSCS+PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods.Results: The results of Ultraviolet-visible(UV-vis) spectrum, Fourier-transform infrared(FTIR) spectrum, circular dichroism(CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200μm, porosity rate of 83.57%±2.64%, water vapor transmission ratio(WVTR) of 4500 g/m2, tensile strength of 1.79±0.41 N/mm, and elongation at break of 4.52%±0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3 rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94%±5.50%, 29.40%±1.10% and 47.24%±8.40%, respectively. SSCS also enhanced TGF-in the initial stage of the healing period. The SSCS+PU dressing effectively protected woundsβ and CD31 expression from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS+PU dressing also enhanced expression of TGF-n and gauze dressings.β and CD31. The effects of SSCS and SSCS+PU were superior to those of both the chitosaConclusion: SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS+PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.展开更多
基金supported by the German Research Foundation DFG within the Cluster of Excellence "Integrative Production Technology for High-Wage Countries
文摘Within the project "Functional Surfaces via Micro-and Nanoscaled Structures" which is part of the Cluster of Excellence "Integrative Production Technology" established and financed by the German Research Foundation (DFG),an investment casting process to produce 3-dimensional functional surfaces down to a structural size of 1μm on near-net-shape-casting parts has been developed.The common way to realize functional microstructures on metallic surfaces is to use laser ablation,electro discharge machining or micro milling.The handicap of these processes is their limited productivity.The approach of this project to raise the efficiency is to use the investment casting process to replicate microstructured surfaces by moulding from a laser-microstructured grand master pattern.The main research objective deals with the investigation of the single process steps of the investment casting process with regard to the moulding accuracy.Actual results concerning making of the wax pattern,suitability of ceramic mould and core materials for casting of an AlSi7Mg0.3 alloy as well as the knock-out behavior of the shells are presented.By using of the example of an intake manifold of a gasoline race car engine,a technical shark skin surface has been realized to reduce the drag of the intake air.The intake manifold consists of an air-restrictor with a defined inner diameter which is microstructured with technical shark skin riblets.For this reason the inner diameter cannot be drilled after casting and demands a very high accuracy of the casting part.A technology for the fabrication and demoulding of accurate microstructured castings are shown.Shrinkage factors of different moulding steps of the macroscopic casting part as well as the microscopic riblet structure have been examined as well.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50775006)the National High Technology Research and Development Program of China (863 Program, Grant No. 2009AA043802)
文摘It is well known that shark skin surface can effectively inhabit the occurrence of turbulence and reduce the wall friction, but in order to understand the mechanism of drag reduction, one has to solve the problem of the turbulent flow on grooved-scale surface, and in that respect, the direct numerical simulation is an important tool. In this article, based on the real biological shark skin, the model of real shark skin is built through high-accurate scanning and data processing. The turbulent flow on a real shark skin is comprehensively simulated, and based on the simulation, the drag reduction mechanism is discussed. In addition, in order to validate the drag-reducing effect of shark skin surface, actual experiments were carried out in water tunnel, and the experimental results are approximately consistent with the numerical simulation.
文摘Windbreak fences in open and urban areas can be used to effectively reduce the wind velocity. In this paper we examine how the geometrical shape of the windbreak fence can optimally mitigate wind velocity. We propose an approach for windbreak fence design based on a bionic parametric model of the shark skin denticle geometry, which improves the reduction of the wind velocity around and behind the windbreak fences. The generative model was used to estimate improvements by variations in the parameters of the fence panel's geometrical shape, inspired by shark skin denticles. The results of the Computational Fluid Dynamics (CFD) analysis indicates that the fence surface inspired by shark skin performs much better than both flat and cor- rugated surfaces. Taking into account the complex geometry of the surface inspired by shark skin denticles, we propose a fab- rication process using an expanded polystyrene foam (EPS) material, created using an industrial robot arm with a hot-wire tool. Creating EPS moulds for the shark skin denticle panels allows for a richer variety material to be used in the final design, leading both to higher efficiency and a more attractive design.
基金the National Defense Fundamental Research Foundation of China (Grant No. D2120060002)the National Natural Science Foundation of China (Grant No. 59975007)
文摘Direct replication of creatural scarfskins to form biomimetic surfaces with relatively vivid morphology is a new attempt of the bio-replicated forming technology at animal body. Taking shark skins as the replication templates, and the micro-embossing and micro-molding as the material forming methods, the micro-replicating technology of the outward morphology on shark skins was demonstrated. The preliminary analysis on replication precision indicates that the bio-replicated forming technology can replicate the outward morphology of the shark scales with good precision, which validates the application of the bio-replicated forming technology in the direct morphology replication of the firm creatural scarfskins.
基金supported by the National Natural Science Foundation of China (50775006)the National Defense Basic Science Research Special Foundation (D2120060002)the Key Project of National High-Tech R&D Program of China (2009AA043802)
文摘Nano-long chains were grafted over the replicated micro-grooves of shark skin in a novel attempt to replicate bio-synthetic drag reduction structure with high precision through synthetic bio-replication. Pre-treated shark skin was used as casting template to prepare a flexible female die of silicone rubber by soft die formation. A waterborne epoxy resin was then used to graft long-chains of drag reduction agent and prepare a synthetic drag reduction shark skin with nano-long chain drag reduction interface and lifelike micro-grooves. Replication precision analysis shows that this technology could replicate the complicated three-dimensional morphology of a biological drag reduction surface with high precision. Drag reduction experiments show that the material had an excellent synthetic drag reduction effect, with a maximal drag reduction rate of up to 24.6% over the velocities tested.
基金the National Natural Science Foundation of China (Grant No. 50775006)the National Defense Fundamental Research Foundation of China (Grant No. D2120060002)
文摘On the investigation of biomimetic drag-reducing surface, direct replication of the firm scarfskins on low-resistance creatures to form biomimetic drag-reducing surfaces with relatively vivid morphology relative to the living prototype is a new attempt of the bio-replicated forming technology.Taking shark skin as the bio-replication template, the hot embossing method was applied to the microreplication of its outward morphology. Furthermore, the skins were jointed together to form the drag-reducing surface in large area. The results of the resistance measurements in a water tunnel according to the flat-plate sample pieces have shown that the biomimetic shark-skin coating fabricated by the bio-replicated forming method has significant drag reduction effect, and that the drag reduction efficiency reached 8.25% in the test conditions.
基金supported by a Major Project of the Ministry of National Science and Technology of China(Grant No.2014ZX09J14103-09C).
文摘Background: Wounded personnel who work at sea often encounter a plethora of difficulties. The most important of these difficulties is seawater immersion. Common medical dressings have little effect when the affected area is immersed in seawater, and only rarely dressings have been reported for the treatment of seawater-immersed wounds. The objective of this study is to develop a new dressing which should be suitable to prevent the wound from seawater immersion and to promote the wound healing.Methods: Shark skin collagen(SSC) was purified via ethanol de-sugaring and de-pigmentation and adjusted for p H. A shark skin collagen sponge(SSCS) was prepared by freeze-drying. SSCS was attached to an anti-seawater immersion polyurethane(PU) film(SSCS+PU) to compose a new dressing. The biochemical properties of SSC and physicochemical properties of SSCS were assessed by standard methods. The effects of SSCS and SSCS+PU on the healing of seawaterimmersed wounds were studied using a seawater immersion rat model. For the detection of SSCS effects on seawaterimmersed wounds, 12 SD rats, with four wounds created in each rat, were divided into four groups: the 3 rd day group, 5 th day group, 7 th day group and 12 th day group. In each group, six wounds were treated with SSCS, three wounds treated with chitosan served as the positive control, and three wounds treated with gauze served as the negative control. For the detection of the SSCS+PU effects on seawater-immersed wounds, 36 SD rats were divided into three groups: the gauze(GZ)+PU group, chitosan(CS)+PU group and SSCS+PU group, with 12 rats in each group, and two wounds in each rat. The wound sizes were measured to calculate the healing rate, and histomorphology and the immunohistochemistry of the CD31 and TGF-β expression levels in the wounded tissues were measured by standard methods.Results: The results of Ultraviolet-visible(UV-vis) spectrum, Fourier-transform infrared(FTIR) spectrum, circular dichroism(CD) spectra, sodium dodecyl sulfate polyacrylamide gel electrophoresis(SDS-PAGE), and amino acid composition analyses of SSC demonstrated that SSC is type I collagen. SSCS had a homogeneous porous structure of approximately 200μm, porosity rate of 83.57%±2.64%, water vapor transmission ratio(WVTR) of 4500 g/m2, tensile strength of 1.79±0.41 N/mm, and elongation at break of 4.52%±0.01%. SSCS had significant beneficial effects on seawater-immersed wound healing. On the 3 rd day, the healing rates in the GZ negative control, CS positive control and SSCS rats were 13.94%±5.50%, 29.40%±1.10% and 47.24%±8.40%, respectively. SSCS also enhanced TGF-in the initial stage of the healing period. The SSCS+PU dressing effectively protected woundsβ and CD31 expression from seawater immersion for at least 4 h, and accelerated re-epithelialization, vascularization and granulation formation of seawater-immersed wounds in the earlier stages of wound healing, and as well as significantly promoted wound healing. The SSCS+PU dressing also enhanced expression of TGF-n and gauze dressings.β and CD31. The effects of SSCS and SSCS+PU were superior to those of both the chitosaConclusion: SSCS has significant positive effects on the promotion of seawater-immersed wound healing, and a SSCS+PU dressing effectively prevents seawater immersion, and significantly promotes seawater-immersed wound healing.