期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Shear capacity of reinforced concrete columns strengthened with CFRP sheet
1
作者 谢剑 刘雪梅 赵彤 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2005年第8期853-858,共6页
This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced w... This paper discusses the results of tests on the shear capacity of reinforced concrete columns strengthened with carbon fiber reinforced plastic (CFRP) sheet. The shear transfer mechanism of the specimens reinforced with CFRP sheet was studied. The factors affecting the shear capacity of reinforced concrete columns strengthened with CFRP sheet were analyzed. Several sug-gestions such as the number of layers, width and tensile strength of the CFRP sheet are proposed for this new strengthening technique. Finally, a simple and practical design method is presented in the paper. The calculated results of the suggested method are shown to be in good agreement with the test results. The suggested design method can be used in evaluating the shear capacity of reinforced concrete columns strengthened with CFRP sheet. 展开更多
关键词 Reinforced concrete Carbon fiber reinforced plastic (CFRP) COLUMN shear capacity
下载PDF
A Comprehensive Investigation on Shear Performance of Improved Perfobond Connector
2
作者 Caiping Huang Zihan Huang Wenfeng You 《Structural Durability & Health Monitoring》 EI 2024年第3期299-320,共22页
This paper presents an easily installed improved perfobond connector (PBL) designed to reduce the shearconcentration of PBL. The improvement of PBL lies in changing the straight penetrating rebar to the Z-typepenetrat... This paper presents an easily installed improved perfobond connector (PBL) designed to reduce the shearconcentration of PBL. The improvement of PBL lies in changing the straight penetrating rebar to the Z-typepenetrating rebar. To study the shear performance of improved PBL, two PBL test specimens which containstraight penetrating rebar and six improved PBL test specimens which contain Z-type penetrating rebars weredesigned and fabricated, and push-out tests of these eight test specimens were carried out to investigate andcompare the shear behavior of PBL. Additionally, Finite Element Analysis (FEA) models of the PBL specimenswere established and validated against the test results. Through FEA, the effects of concrete grade, perforatedplate’s aperture, Z-type penetrating rebar’s diameter, Z-type penetrating rebar’s bending angle, and bending lengthon shear behaviors were discussed. The results indicate that (1) Compared with PBL specimens with straightpenetrating rebars, Z-type penetrating rebar can significantly improve the shear resistance and shear stiffnessof the specimens. This enhanced performance can be mainly attributed to the increased adhesion of the transverserebar. (2) By comparing the load-slip curve, the slip of PBL test specimens which contain straight penetratingrebar increases rapidly and the bearing capacity decreases rapidly after concrete craking, while the bearingcapacity of Z-type penetrating rebar specimens decreases first and then increases gradually, showing betterductility. (3) The stress of the PBL shear connector with Z-type penetrating rebar is more uniform than thePBL shear connector with straight penetrating rebar, and the overall deformation is more uniform. (4) The higherthe concrete grade, the higher the shear bearing capacity and the better ductility of the new PBL. Increasing theaperture of the perforated plate or the diameter of the rebar has a very limited effect on the improvement of theshear capacity of PBL. Through the systematic analysis of the mechanical properties of Z-type penetrating rebarPBL specimen, the experimental reference is provided for improving the structure and design of new type PBL. 展开更多
关键词 PBL penetrating rebar push-out test load-slip curve shear capacity finite element analysis
下载PDF
The Influence of Steel and Basalt Fibers on the Shear and Flexural Capacity of Reinforced Concrete Beams
3
作者 Julita Krassowska Andrzej Lapko 《Journal of Civil Engineering and Architecture》 2013年第7期789-795,共7页
To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC... To improve the shear and flexural capacity of flexural members, the steel and basalt fibers were used in model beams tested under flexure. Three series of single span free supported model beams were prepared from SFRC (steel fiber reinforced concrete) with longitudinal steel reinforcement (steel ratio of 1.2 %) and varied spacing of steel stirrups and they were tested till failure. Another three series of BFRC (basalt fiber reinforced concrete) double-span model beams with a span of 2 mm~ 1,000 mm and cross section 180 mm ~ 80 mm were tested. During the tests till to the failure the beam reactions, vertical deflections and horizontal strains in concrete were registered, to clarify the range of redistribution of bending moments and shear forces over the span of the beams. Almost all the tested model beams failed in shear, showing visible influence of steel and basalt fibers on the shear capacity of the tested beams. The tests results confirmed that steel and basalt fibers in reinforced concrete beams can partially replace (in certain cases) the traditional steel stirrups calculated for shear. 展开更多
关键词 Steel and basalt fiber reinforced concrete STIRRUPS shear capacity.
下载PDF
Experimental research on shear carrying capacity of H-steel concrete composite beam with small shear span ratio 被引量:1
4
作者 王钧 赵天石 +1 位作者 谢恒燕 郑文忠 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2010年第3期398-400,共3页
In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test... In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test design,test scheme,test method,failure characteristics and test results. Influences of shear span ratio,web of H steel and concrete on shear carrying capacity of this kind of beam are investigated. The main components comprising shear bearing capacity are analyzed. The results show that with the shear span ratio increasing,the contribution of web of H steel and concrete on shear carrying capacity decrease. Based on test data,the calculation formula of shear carrying capacity for this beam is established by curve fitting. 展开更多
关键词 CONCRETE H-steel composite beam shear span ratio shear carrying capacity
下载PDF
Experimental Shear Study on Reinforced High Strength Concrete Beams Made Using Blended Cement
5
作者 Brijesh Singh Vikas Patel +2 位作者 P.N.Ojha Amit Trivedi V.V.Arora 《Journal of Architectural Environment & Structural Engineering Research》 2022年第1期9-16,共8页
With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.R... With the increased application of High Strength Concrete(HSC)in construction and lack of proper guidelines for structural design in India,behavioral study of high strength concrete is an important aspect of research.Research on the behavior of HSC reinforced beams with concrete strength more than 60 MPa has been carried out in the past and is still continuing to understand the structural behavior of HSC beams.Along with the many benefits of the high strength concrete,the more brittle behavior is of concern which leads to sudden failure.This paper presents the behavior of reinforced HSC beams in shear with considering the effects of various factors like shear reinforcement ratio,longitudinal reinforcement ratio,l/d ratio(length to depth ratio),etc.Ten numbers Reinforced Concrete Beams of various sizes using concrete mix with three different w/c ratios(0.46,0.26 and 0.21)were cast for shear strength assessment.The beams were tested in simply supported condition over two fixed steel pedestals with load rate of 0.2 mm/minute in displacement control.Mid-point deflection was measured using LVDT.A comparative analysis of theoretical approaches of Euro code,extension of current IS code up to M90 and the experimental data was done to understand the behavior of beams.Shear capacities of beams without any factors of safety were used to assess the actual capacities and then was compared with the experimental capacity obtained.Results of this study can be used in the design of high strength concrete and will be more reliable in Indian continent as the regional materials and exposure conditions were considered. 展开更多
关键词 High strength concrete shear capacity Reinforced concrete beams shear behaviour Span to depth ratio
下载PDF
Punching shear behavior of steel fiber reinforced recycled coarse aggregate concrete two-way slab without shear reinforcement
6
作者 Yongming YAN Danying GAO Feifei LUO 《Frontiers of Structural and Civil Engineering》 SCIE EI 2024年第10期1556-1575,共20页
In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load.... In this paper,the punching shear performance of 8 steel fiber reinforced recycled coarse aggregate concrete(SFRCAC)two-way slabs with a size of 1800 mm×1800 mm×150 mm was studied under local concentric load.The effects of RCA replacement ratio(rg)and SF volume fraction(Vf)on the punching shear performance of SFRCAC two-way slabs were investigated.Digital Image Correlation(DIC)measurement and Acoustic Emission(AE)technique were introduced to collect pictures and relevant data during the punching shear test.The test results show that the SFRCAC two-way slab mainly exhibits punching shear failure and flexure failure under local concentric load.The punching shear failure space area of SFRCAC two-way slab has no obvious change with increasing rg,however,show a gradual increase trend with increasing Vf.Both of the punching shear ultimate bearing capacity(Pu)and its deflection of SFRCAC two-way slab decrease with increasing rg and increase with increasing Vf,respectively.Finally,through the regression analysis of the results from this study and the data collected from related literature,the influence of rg and Vf on the Pu of two-way slabs were obtained,and the equations in GB 50010-2010,ACI 318-19,and Eurocode 2 Codes were amended,respectively.Furthermore,the amended equations were all applicable to predicted the ultimate bearing capacity of the ordinary concrete two-way slab,RCAC two-way slab,SFRC two-way slab,and SFRCAC two-way slab. 展开更多
关键词 recycled coarse aggregate steel fiber reinforced recycled coarse aggregate concrete two-way slab punching shear punching shear ultimate bearing capacity
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部