期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
DEM simulation of particle mixing in a sheared granular flow 被引量:10
1
作者 Li-Shin Lu Shu-San Hsiau 《Particuology》 SCIE EI CAS CSCD 2008年第6期445-454,共10页
Mixing behaviors of particles are simulated in a sheared granular flow using differently colored but otherwise identical glass spheres, with five different bottom wall velocities. By DEM simulation, the solid fraction... Mixing behaviors of particles are simulated in a sheared granular flow using differently colored but otherwise identical glass spheres, with five different bottom wall velocities. By DEM simulation, the solid fractions, velocities, velocity fluctuations and granular temperatures are measured. The mixing layer thicknesses are compared with the calculations from a simple diffusion equation using the data of apparent self-diffusion coefficients obtained from the current simulation measurements. The calculations and simulation results showed good agreements, demonstrating that the mixing process of granular materials occurred through the diffusion mechanism. 展开更多
关键词 DEM Particle mixing sheared granular flow DIFFUSION
原文传递
Particle dynamics in dense shear granular flow 被引量:8
2
作者 Dengming Wang Youhe Zhou 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2010年第1期91-100,共10页
The particle dynamics in an annular shear granular flow is studied using the discrete element method, and the influences of packing fraction, shear rate and friction coefficient are analyzed. We demonstrate the existe... The particle dynamics in an annular shear granular flow is studied using the discrete element method, and the influences of packing fraction, shear rate and friction coefficient are analyzed. We demonstrate the existence of a critical packing fraction exists in the shear granular flow. When the packing fraction is lower than this critical value, the mean tangential velocity profile exhibits a rate-independent feature. However, when the packing fraction exceeds this critical value, the tangential velocity profile becomes rate-dependent and varies gradually from linear to nonlinear with increasing shear rate. Furthermore, we find a continuous transition from the unjammed state to the jammed state in a shear granular flow as the packing fraction increases. In this transforming process, the force distribution varies distinctly and the contact force network also exhibits different features. 展开更多
关键词 Shear granular flow - Tangential velocity profile Critical packing fraction Force distribution - Jammed state
下载PDF
Numerical simulation of two-dimensional granular shearing flows and the friction force of a moving slab on the granular media 被引量:3
3
作者 蔡庆东 陈十一 盛晓伟 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第2期326-331,共6页
This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution fu... This paper studies some interesting features of two-dimensional granular shearing flow by using molecular dynamic approach for a specific granular system. The obtained results show that the probability distribution function of velocities of particles is Gaussian at the central part, but diverts from Gaussian distribution nearby the wall. The macroscopic stress along the vertical direction has large fluctuation around a constant value, the non-zero average velocity occurs mainly near the moving wall, which forms a shearing zone.. In the shearing movement, the volume of the granular material behaves in a random manner. The equivalent fl'iction coefficient between moving slab and granular material correlates with the moving speed at low velocity, and approaches constant as the velocity is large enough. 展开更多
关键词 granular shearing flow FRICTION molecular dynamics modeling
下载PDF
Velocity profiles and energy fluctuations in simple shear granular flows
4
作者 Chuanqi Liu Qicheng Sun Gordon G.D. Zhou 《Particuology》 SCIE EI CAS CSCD 2016年第4期80-87,共8页
Rheology analysis of granular flows is important for predicting geophysical hazards and designing industrial processes. Using a discrete element method, we simulate simple shear flows in 3D under a constant confining ... Rheology analysis of granular flows is important for predicting geophysical hazards and designing industrial processes. Using a discrete element method, we simulate simple shear flows in 3D under a constant confining pressure of 10 kPa. The inertial number proposed by the GDR MiDi group in France is adopted to distinguish rheology regimes, Both translational and angular velocity profiles are investigated, and both fluid-like and solid-like behavior modes are observed in the flows. The maximum angular velocity occurs near the localized deformation area. We also investigate the energy characteristics of the flows and find that at very small shearing speed, the mean kinetic energy density ek is close to zero, while the mean elastic energy density ec is much greater. At large shearing speed, ek increases. The fluctuating parts of the two types of energy increase with increasing shear speed. Thus, the mean energy density ratio ek/ec can be used in addition to the inertial number to distinguish flow regimes. These results provide insights from energetics into the rheological properties of granular flows. 展开更多
关键词 Dense granular flows Simple shear Energy fluctuations
原文传递
Discrete element method study of shear-driven granular segregation in a slowly rotating horizontal drum 被引量:4
5
作者 Ram Chand Sithi V. Muniandy +1 位作者 Chiow San Wong Jasbir Singh 《Particuology》 SCIE EI CAS CSCD 2017年第3期89-94,共6页
Segregation and mixing of granular materials are complex processes and are not fully understood. Motivated by industrial need, we performed a simulation using the discrete element method to study size segregation of a... Segregation and mixing of granular materials are complex processes and are not fully understood. Motivated by industrial need, we performed a simulation using the discrete element method to study size segregation of a binary mixture of granular particles in a horizontal rotating drum. Particles of two dif- ferent sizes were poured into the drum until it was 50% full. Shear-driven segregation was induced by rotating the side-plates of the drum in the opposite direction to that of the cylindrical wall. We found that radial segregation diminished in these systems but did not completely vanish. In an ordinary rotating drum, a radial core of smaller particles is formed in the center of the drum, surrounded by larger revolving particles. In our system, however, the smaller particles were found to migrate toward the side-plates. The shear from anti-spinning side-plates reduces the voidage and increases the bulk density. As such, smaller particles in the mixer tend to move to denser regions. We varied the shear by changing the coefficient of friction on the side-plates to study the influence of shear rate on this migration. We also compared the extent of radial segregation with stationary side-plates and with side-plates moving in different angular directions. 展开更多
关键词 granular flow Discrete element method Segregation Side-wall shear Rotating drum Mixing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部