Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave ...Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio (i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity (Vs) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensi- tivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast (e.g., due to the existence of crustal interfaces) and Vp/Vs ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the Vs model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute vs model and then incorporate receiver function data in the joint inver- sion to obtain a finer Vs model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal Vs structures and with little initial model dependency.展开更多
For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate l...For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Su~) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.展开更多
Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the...Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m under- ground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes,shorten survey period, and reduce engineering cost to some extent.展开更多
Variation of shear-wave propagation velocity (SWV) with depth was studied by analyzing more than one hundred actual SWV profiles. Linear, power, and hyperbolic variation schemes were investigated to find the most re...Variation of shear-wave propagation velocity (SWV) with depth was studied by analyzing more than one hundred actual SWV profiles. Linear, power, and hyperbolic variation schemes were investigated to find the most representative form for naturally occurred alluvial deposits. It was found that hyperbolic (asymptotic) variation dominates the majority of cases and it can be reliably implemented in analytical or analytical-numerical procedures. Site response analyses for a one-layer heterogeneous stratum were conducted to find an equivalent homogeneous alternative which simplifies the analysis procedure but does not compromise the accuracy of the resonance and amplification responses. Harmonic average, arithmetic average and mid-value equivalents are chosen from the literature for investigation. Furthermore, full and partial depth averaging schemes were evaluated and compared in order to verify the validity of current practices which rely upon averaging shallow depths, viz., the first 30 m of the strata. Engineering bedrock concept was discussed and the results were compared.展开更多
基金supported by the National Earthquake Science Experiment in Sichuan and Yunnan Provinces of China(#2016 CESE 0201)National Natural Science Foundation of China(#41574034)China National Special Fund for Earthquake Scientific Research in Public Interest(#201508008)
文摘Accurate determination of seismic velocity of the crust is important for understanding regional tectonics and crustal evolution of the Earth. We propose a stepwise joint linearized inversion method using surface wave dispersion, Rayleigh wave ZH ratio (i.e., ellipticity), and receiver function data to better resolve 1D crustal shear wave velocity (Vs) structure. Surface wave dispersion and Rayleigh wave ZH ratio data are more sensitive to absolute variations of shear wave speed at depths, but their sensi- tivity kernels to shear wave speeds are different and complimentary. However, receiver function data are more sensitive to sharp velocity contrast (e.g., due to the existence of crustal interfaces) and Vp/Vs ratios. The stepwise inversion method takes advantages of the complementary sensitivities of each dataset to better constrain the Vs model in the crust. We firstly invert surface wave dispersion and ZH ratio data to obtain a 1D smooth absolute vs model and then incorporate receiver function data in the joint inver- sion to obtain a finer Vs model with better constraints on interface structures. Through synthetic tests, Monte Carlo error analyses, and application to real data, we demonstrate that the proposed joint inversion method can resolve robust crustal Vs structures and with little initial model dependency.
文摘For sites susceptible to liquefaction induced lateral spreading during a probable earthquake, geotechnical engineers often need to know the undrained residual shear strength of the liquefied soil deposit to estimate lateral spreading displacements, and the forces acting on the piles from the liquefied soils in order to perform post liquefaction stability analyses. The most commonly used methods to estimate the undrained residual shear strength (Su~) of liquefied sand deposits are based on the correlations determined from liquefaction induced flow failures with SPT and CPT data. In this study, 44 lateral spread case histories are analyzed and a new relationship based on only lateral spread case histories is recommended, which estimates the residual shear strength ratio of the liquefiable soil layer from normalized shear wave velocity. The new proposed method is also utilized to estimate the residual lateral displacement of an example bridge problem in an area susceptible to lateral spreading in order to provide insight into how the proposed relationship can be used in geotechnical engineering practice.
基金supported by National Natural Science Foundation of China (No. 41174085)Chinese Academy of Sciences (KZZD-EW-TZ-19)China Geological Survey (12120113101400)
文摘Site engineering seismic survey provides basic data for seismic effect analysis. As an important parameter of soil, shear-wave velocity is usually obtained through wave velocity testing in borehole. In this paper, the passive source surface-wave method is introduced into the site engineering seismic survey and practically applied in an engineering site of Shijingshan District. By recording the ubiquitous weak vibration on the earth surface, extract the dispersion curve from the surface-wave components using the SPAC method and obtain the shear-wave velocity structure from inversion. Over the depth of 42 m under- ground, it totally consists of five layers with interface depth of 3.31, 4.50, 7.23, 17.41, and 42.00 m; and shear-wave velocity of 144.0, 198.3, 339.4, 744.2, and 903.7 m/s, respectively. The inversion result is used to evaluate site classification, determine the maximum shear modulus of soil, provide basis for further seismic hazard analysis and site assessment or site zoning, etc. The result shows that the passive source surface-wave method is feasible in the site engineering seismic survey and can replace boreholes,shorten survey period, and reduce engineering cost to some extent.
文摘Variation of shear-wave propagation velocity (SWV) with depth was studied by analyzing more than one hundred actual SWV profiles. Linear, power, and hyperbolic variation schemes were investigated to find the most representative form for naturally occurred alluvial deposits. It was found that hyperbolic (asymptotic) variation dominates the majority of cases and it can be reliably implemented in analytical or analytical-numerical procedures. Site response analyses for a one-layer heterogeneous stratum were conducted to find an equivalent homogeneous alternative which simplifies the analysis procedure but does not compromise the accuracy of the resonance and amplification responses. Harmonic average, arithmetic average and mid-value equivalents are chosen from the literature for investigation. Furthermore, full and partial depth averaging schemes were evaluated and compared in order to verify the validity of current practices which rely upon averaging shallow depths, viz., the first 30 m of the strata. Engineering bedrock concept was discussed and the results were compared.