A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable...A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable to increase the applications. Therefore the improvement of workability of 6.5% Si steel sheet was investigated, and the results were obtained as follows: (a) workability of 6.5% Si steel sheet is deteriorated by grain boundary oxidization, (b) grain boundary oxidization can be restrained by the addition of C. Workability and magnetic properties of 6.5% Si steel sheet with C addition are discussed. Furthermore, it was found that the workability of high Si steel sheet was improved remarkably by varying the Si content gradient along the thickness without deterioration of high frequency magnetic properties. This newly developed magnetic gradient high Si steel sheet is also discussed.展开更多
We investigated the influences of process parameters on the head curvature of pure titanium sheet in hot rolling process and proposed the controlling means. First, the thermal simulation experiments for pure titanium ...We investigated the influences of process parameters on the head curvature of pure titanium sheet in hot rolling process and proposed the controlling means. First, the thermal simulation experiments for pure titanium TA1 were carried out to investigate the hot deformation behaviors of pure titanium in the temperature range of 700-800 ℃ with strain rate range of 1-20 S-1, and the processing map was established to determine optimized deformation parameters. Then, the finite element model has been constructed and used to analyze the effect of process parameters on the direction and severity of head curvature of pure titanium sheet. The process parameters considered in the present study include workpiece temperature, work roll diameter, pass reduction, oxide scale thickness of workpiece surface, and interface friction coefficient. The simulation results show that the workpiece temperature and the interface friction coefficient are the two main factors. The proposed controlling means was carried out on a hot rolling production line and solved the head curvature problem effectively. The rolling practices indicate that the rolling yield is improved greatly.展开更多
An experimental investigation is outlined for the CO 2 laser cutting process of metallic coated sheet steels, GALVABOND. It shows that by proper control of the cutting parameters, good quality cuts are possible a...An experimental investigation is outlined for the CO 2 laser cutting process of metallic coated sheet steels, GALVABOND. It shows that by proper control of the cutting parameters, good quality cuts are possible at high cutting rate. Visual examination indicates that when increasing the cutting rate to as high as 5000 mm/min (about 100 times that suggested previously), kerfs of better quality can be achieved. Some kerf characteristics such as the width, heat affected zone and dross in terms of the process parameters are also discussed. A statistical analysis has arrived at a recommendatio on the optimum cutting parameters forprocessing GALVABOND.展开更多
The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this...The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100.展开更多
Laser forming is a new type of flexible manufacturing process that has become viable for the shaping of metallic components. Process designing of laser forming involves finding a set of process parameters, including l...Laser forming is a new type of flexible manufacturing process that has become viable for the shaping of metallic components. Process designing of laser forming involves finding a set of process parameters, including laser power, laser scanning paths, and scanning speed, given a prescribed shape. To date, research has focused on process designing for rectangular plates, and only a few studies are presented for axis-symmetric geometries like circular plates. In the present study, process designing for axis-symmetric geometries--with focus on class of shapes--is handled using a formerly proposed distance-based approach. A prescribed shape is achieved for geometries such as quarter-circular and half-circular ring plates. Experimental results verify the applicability of the proposed method for a class of shapes.展开更多
The global trends towards improving fuel efficiency and reducing CO;emissions are the key drivers for lightweight solutions. In sheet metal processing, this can be achieved by the use of materials with a supreme stren...The global trends towards improving fuel efficiency and reducing CO;emissions are the key drivers for lightweight solutions. In sheet metal processing, this can be achieved by the use of materials with a supreme strength-toweight and stiffness-to-weight ratio. Besides monolithic materials such as high-strength or light metals, in particular metal–plastic composite sheets are able to provide outstanding mechanical properties. Thus, the adaption of conventional, wellestablished forming methods for the processing of hybrid sheet metals is a current challenge for the sheet metal working industry. In this work, the planning phase for a conventional sheet metal forming process is studied aiming at the forming of metal–plastic composite sheets. The single process steps like material characterization, FE analysis, tool design and development of robust process parameters are studied in detail and adapted to the specific properties of metal–plastic composites. In material characterization, the model of the hybrid laminate needs to represent not only the mechanical properties of the individual combined materials, but also needs to reflect the behaviour of the interface zone between them.Based on experience, there is a strong dependency on temperature as well as strain rate. While monolithic materials show a moderate anisotropic behaviour, loads on laminates in different directions generate different strain states and completely different failure modes. During the FE analysis, thermo-mechanic and thermo-dynamic effects influence the temperature distribution within tool and work pieces and subsequently the forming behaviour. During try out and production phase,those additional influencing factors are limiting the process window even more and therefore need to be considered for the design of a robust forming process. A roadmap for sheet metal forming adjusted to metal–plastic composites is presented in this paper.展开更多
文摘A siliconizing process to manufacture 6.5% Si steel sheet has been developed. Electric components, such as transformers and reactors are made easily from 6.5% Si steel sheet. However, improved workability is desirable to increase the applications. Therefore the improvement of workability of 6.5% Si steel sheet was investigated, and the results were obtained as follows: (a) workability of 6.5% Si steel sheet is deteriorated by grain boundary oxidization, (b) grain boundary oxidization can be restrained by the addition of C. Workability and magnetic properties of 6.5% Si steel sheet with C addition are discussed. Furthermore, it was found that the workability of high Si steel sheet was improved remarkably by varying the Si content gradient along the thickness without deterioration of high frequency magnetic properties. This newly developed magnetic gradient high Si steel sheet is also discussed.
基金Funded by the National Natural Science Foundation of China(51275445)
文摘We investigated the influences of process parameters on the head curvature of pure titanium sheet in hot rolling process and proposed the controlling means. First, the thermal simulation experiments for pure titanium TA1 were carried out to investigate the hot deformation behaviors of pure titanium in the temperature range of 700-800 ℃ with strain rate range of 1-20 S-1, and the processing map was established to determine optimized deformation parameters. Then, the finite element model has been constructed and used to analyze the effect of process parameters on the direction and severity of head curvature of pure titanium sheet. The process parameters considered in the present study include workpiece temperature, work roll diameter, pass reduction, oxide scale thickness of workpiece surface, and interface friction coefficient. The simulation results show that the workpiece temperature and the interface friction coefficient are the two main factors. The proposed controlling means was carried out on a hot rolling production line and solved the head curvature problem effectively. The rolling practices indicate that the rolling yield is improved greatly.
文摘An experimental investigation is outlined for the CO 2 laser cutting process of metallic coated sheet steels, GALVABOND. It shows that by proper control of the cutting parameters, good quality cuts are possible at high cutting rate. Visual examination indicates that when increasing the cutting rate to as high as 5000 mm/min (about 100 times that suggested previously), kerfs of better quality can be achieved. Some kerf characteristics such as the width, heat affected zone and dross in terms of the process parameters are also discussed. A statistical analysis has arrived at a recommendatio on the optimum cutting parameters forprocessing GALVABOND.
文摘The contact pressure acting on the sheet/tools interface has been studied because of growing the concern about the wear of tools. Recent studies make use of numerical simulation software to evaluate and correlate this pressure with the friction and wear generated. Since there are many studies that determine the coefficient of friction in sheet metal forming by bending under tension (BUT) test, the contact pressure between the pin and the sheet was measured using a film that has the ability to record the applied pressure. The vertical force applied to pin was also measured. The results indicate that the vertical force is more accurate to set the contact pressure that using equations predetermined. It was also observed that the contact area between the sheet and the pin is always smaller than the area calculated geometrically. The friction coefficient was determined for the BUT test through several equations proposed by various authors in order to check if there is much variation between the results. It was observed that the friction coefficient showed little variation for each equation, and each one can be used. The material used was the commercially pure aluminum, alloy Al1100.
文摘Laser forming is a new type of flexible manufacturing process that has become viable for the shaping of metallic components. Process designing of laser forming involves finding a set of process parameters, including laser power, laser scanning paths, and scanning speed, given a prescribed shape. To date, research has focused on process designing for rectangular plates, and only a few studies are presented for axis-symmetric geometries like circular plates. In the present study, process designing for axis-symmetric geometries--with focus on class of shapes--is handled using a formerly proposed distance-based approach. A prescribed shape is achieved for geometries such as quarter-circular and half-circular ring plates. Experimental results verify the applicability of the proposed method for a class of shapes.
基金the German Research Foundation (DFG)German Federation of Industrial Research Associations (AiF)the European Research Association for Sheet Metal Working (EFB)
文摘The global trends towards improving fuel efficiency and reducing CO;emissions are the key drivers for lightweight solutions. In sheet metal processing, this can be achieved by the use of materials with a supreme strength-toweight and stiffness-to-weight ratio. Besides monolithic materials such as high-strength or light metals, in particular metal–plastic composite sheets are able to provide outstanding mechanical properties. Thus, the adaption of conventional, wellestablished forming methods for the processing of hybrid sheet metals is a current challenge for the sheet metal working industry. In this work, the planning phase for a conventional sheet metal forming process is studied aiming at the forming of metal–plastic composite sheets. The single process steps like material characterization, FE analysis, tool design and development of robust process parameters are studied in detail and adapted to the specific properties of metal–plastic composites. In material characterization, the model of the hybrid laminate needs to represent not only the mechanical properties of the individual combined materials, but also needs to reflect the behaviour of the interface zone between them.Based on experience, there is a strong dependency on temperature as well as strain rate. While monolithic materials show a moderate anisotropic behaviour, loads on laminates in different directions generate different strain states and completely different failure modes. During the FE analysis, thermo-mechanic and thermo-dynamic effects influence the temperature distribution within tool and work pieces and subsequently the forming behaviour. During try out and production phase,those additional influencing factors are limiting the process window even more and therefore need to be considered for the design of a robust forming process. A roadmap for sheet metal forming adjusted to metal–plastic composites is presented in this paper.