BACKGROUND Liver fibrosis is a common health problem worldwide and there is still a lack of effective medicines.The Chinese herbal medicine,Gan Shen Fu Fang(GSFF)is composed of salvianolic acid B and diammonium glycyr...BACKGROUND Liver fibrosis is a common health problem worldwide and there is still a lack of effective medicines.The Chinese herbal medicine,Gan Shen Fu Fang(GSFF)is composed of salvianolic acid B and diammonium glycyrrhizinate.In this study,we observed the effects of GSFF on liver fibrosis in vivo and in vitro in an attempt to provide some hope for the treatment.AIM To observe the effects of GSFF on liver fibrosis in vivo and in vitro and investigate the mechanism from the perspective of the inflammatory response and extracellular signal-regulated kinase(ERK)phosphorylation.METHODS Common bile duct-ligated rats were used for in vivo experiments.Hepatic stellate cells-T6(HSC-T6)cells were used for in vitro experiments.Hematoxylin and eosin staining and Masson staining,biochemical assays,hydroxyproline(Hyp)assays,enzyme-linked immunoasorbent assay and western blotting were performed to evaluate the degree of liver fibrosis,liver function,the inflammatory response and ERK phosphorylation.The CCK8 assay,immunofluorescence and western blotting were applied to test the effect of GSFF on HSC-T6 cell activation and determine whether GSFF had an effect on ERK phosphorylation in HSC-T6 cells.RESULTS GSFF improved liver function and inhibited liver fibrosis in common bile ductligated rats after 3 wk of treatment,as demonstrated by histological changes,hydroxyproline assays and collagen I concentrations.GSFF alleviated inflammatory cell infiltration and reduced the synthesis of pro-inflammatory cytokines[tumor necrosis factor-α(TNF-α)and interlukin-1β]and NF-κB.In addition,GSFF decreased ERK phosphorylation.In vitro,GSFF inhibited the viability of HSC-T6 cells with and without transforming growth factorβ1(TGF-β1)stimulation and decreased the synthesis of collagen I.GSFF had the greatest effect at a concentration of 0.5μmol/L.GSFF inhibited the expression ofα-smooth muscle actin(α-SMA),a marker of HSC activation,in HSC-T6 cells.Consistent with the in vivo results,GSFF also inhibited the phosphorylation of ERK and downregulated the expression of NF-κB.CONCLUSION GSFF inhibited liver fibrosis progression in vivo and HSC-T6 cell activation in vitro.These effects may be related to an alleviated inflammatory response and downregulated ERK phosphorylation.展开更多
Objective: To elucidate the protective effect of Gan Shen Fu Fang(GSFF) on liver endothelial cells in common bile duct-ligated(CBDL) rats.Materials and Methods: Cirrhosis was induced by common bile duct ligation. The ...Objective: To elucidate the protective effect of Gan Shen Fu Fang(GSFF) on liver endothelial cells in common bile duct-ligated(CBDL) rats.Materials and Methods: Cirrhosis was induced by common bile duct ligation. The rats were divided into three groups: sham group, CBDL group, and GSFF group. After 2 weeks of ligation, rats in the GSFF group were administered GSFF. After 4 weeks, the hydroxyproline(Hyp)content of liver tissues was spectrophotometrically determined. The histological changes were evaluated by H and E and Masson staining.Transmission electron microscopy(TEM) and scanning electron microscopy(SEM) were used to observe the ultrastructural changes in the liver, especially in the liver sinusoidal endothelial cells(LSECs). Results: Hyp synthesis was significantly inhibited by GSFF, which agreed with the results from H and E and Masson staining for liver fibrosis. The TEM observations of CBDL rats revealed reduced hepatocyte microvilli and deposited fibrous tissue underneath LSECs. SEM confirmed the TEM findings and showed that the fenestrae of LSECs decreased and even disappeared in CBDL rats. The morphological results indicated hepatic sinusoid capillarization. GSFF promoted the restoration of fenestrae and reversed hepatic sinusoid capillarization. Conclusion: GSFF can inhibit Hyp synthesis, restore the fenestrae of LSECs, and reverse hepatic sinusoid capillarization in CBDL rats. These results provide a basis for future detailed investigations of the mechanism of action of GSFF in LSECs.展开更多
基金Supported by the Innovation Team of the Beijing University of Chinese Medicine,No.2019-JYB-TD-006the National Natural Science Foundation of China,No.81873099Scientific Research Support Plan for the Construction of Doctoral Program of University of Tibetan Medicine.
文摘BACKGROUND Liver fibrosis is a common health problem worldwide and there is still a lack of effective medicines.The Chinese herbal medicine,Gan Shen Fu Fang(GSFF)is composed of salvianolic acid B and diammonium glycyrrhizinate.In this study,we observed the effects of GSFF on liver fibrosis in vivo and in vitro in an attempt to provide some hope for the treatment.AIM To observe the effects of GSFF on liver fibrosis in vivo and in vitro and investigate the mechanism from the perspective of the inflammatory response and extracellular signal-regulated kinase(ERK)phosphorylation.METHODS Common bile duct-ligated rats were used for in vivo experiments.Hepatic stellate cells-T6(HSC-T6)cells were used for in vitro experiments.Hematoxylin and eosin staining and Masson staining,biochemical assays,hydroxyproline(Hyp)assays,enzyme-linked immunoasorbent assay and western blotting were performed to evaluate the degree of liver fibrosis,liver function,the inflammatory response and ERK phosphorylation.The CCK8 assay,immunofluorescence and western blotting were applied to test the effect of GSFF on HSC-T6 cell activation and determine whether GSFF had an effect on ERK phosphorylation in HSC-T6 cells.RESULTS GSFF improved liver function and inhibited liver fibrosis in common bile ductligated rats after 3 wk of treatment,as demonstrated by histological changes,hydroxyproline assays and collagen I concentrations.GSFF alleviated inflammatory cell infiltration and reduced the synthesis of pro-inflammatory cytokines[tumor necrosis factor-α(TNF-α)and interlukin-1β]and NF-κB.In addition,GSFF decreased ERK phosphorylation.In vitro,GSFF inhibited the viability of HSC-T6 cells with and without transforming growth factorβ1(TGF-β1)stimulation and decreased the synthesis of collagen I.GSFF had the greatest effect at a concentration of 0.5μmol/L.GSFF inhibited the expression ofα-smooth muscle actin(α-SMA),a marker of HSC activation,in HSC-T6 cells.Consistent with the in vivo results,GSFF also inhibited the phosphorylation of ERK and downregulated the expression of NF-κB.CONCLUSION GSFF inhibited liver fibrosis progression in vivo and HSC-T6 cell activation in vitro.These effects may be related to an alleviated inflammatory response and downregulated ERK phosphorylation.
基金supported by the Beijing Municipal Natural Science Foundation[7144223]supported by the China Scholarship Council program(201606555017)the Research Program of Beijing University of Chinese Medicine(2017-JYB-JS)
文摘Objective: To elucidate the protective effect of Gan Shen Fu Fang(GSFF) on liver endothelial cells in common bile duct-ligated(CBDL) rats.Materials and Methods: Cirrhosis was induced by common bile duct ligation. The rats were divided into three groups: sham group, CBDL group, and GSFF group. After 2 weeks of ligation, rats in the GSFF group were administered GSFF. After 4 weeks, the hydroxyproline(Hyp)content of liver tissues was spectrophotometrically determined. The histological changes were evaluated by H and E and Masson staining.Transmission electron microscopy(TEM) and scanning electron microscopy(SEM) were used to observe the ultrastructural changes in the liver, especially in the liver sinusoidal endothelial cells(LSECs). Results: Hyp synthesis was significantly inhibited by GSFF, which agreed with the results from H and E and Masson staining for liver fibrosis. The TEM observations of CBDL rats revealed reduced hepatocyte microvilli and deposited fibrous tissue underneath LSECs. SEM confirmed the TEM findings and showed that the fenestrae of LSECs decreased and even disappeared in CBDL rats. The morphological results indicated hepatic sinusoid capillarization. GSFF promoted the restoration of fenestrae and reversed hepatic sinusoid capillarization. Conclusion: GSFF can inhibit Hyp synthesis, restore the fenestrae of LSECs, and reverse hepatic sinusoid capillarization in CBDL rats. These results provide a basis for future detailed investigations of the mechanism of action of GSFF in LSECs.