Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this ...Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.展开更多
With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamilt...With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamiltonian operator is obtained. Then the evolution of the charge number and phase difference across the capacity are obtained. It is shown that the number-phase analysis is useful to tackle the quantization of some mesoscopic circuits and dynamical equations of the corresponding operators.展开更多
We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a singl...We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single A-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices.展开更多
The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnos...The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnosis in analog circuits is presented in this paper.The proposed method extracts the original signals from the output terminals of the circuits under test(CUT) by a data acquisition board.Firstly,the phase deviation value between fault-free and faulty conditions is obtained by fitting the sampling sequence with a sine curve.Secondly,the sampling sequence is organized into a square matrix and the spectral radius of this matrix is obtained.Thirdly,the smallest error of the spectral radius and the corresponding component value are obtained through comparing the spectral radius and phase deviation value with the trend curves of them,respectively,which are calculated from the simulation data.Finally,the fault location is completed by using the smallest error,and the corresponding component value is the parameter identification result.Both simulated and experimental results show the effectiveness of the proposed approach.It is particularly suitable for the fault location and parameter identification for analog integrated circuits.展开更多
For a mesoscopic L-C circuit,besides the Louisell's quantization scheme in which electric charge q andelectric current I are respectively quantized as the coordinate operator Q and momentum operator P,in this pape...For a mesoscopic L-C circuit,besides the Louisell's quantization scheme in which electric charge q andelectric current I are respectively quantized as the coordinate operator Q and momentum operator P,in this paperwe propose a new quantization scheme in the context of number-phase quantization through the standard Lagrangianformalism.The comparison between this number-phase quantization with the Josephson junction's Cooper pair number-phase-difference quantization scheme is made.展开更多
We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state ...We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state initially, and the time evolution of Pancharatnam phase exhibits an oscillation in a complex way. Especially we find that when the capacity of the coupled capacitors is larger than that of other ones in the circuit, with the variation of time Pancharatnam phase becomes nearly periodic square-wave, which perhaps can provide a new approach for the realization of quantum logic gate.展开更多
The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realize...The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant(winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.展开更多
We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubits situated in a high-Q superconducting transmission line resonator. The phase shifting angle can be tuned from 0 to...We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubits situated in a high-Q superconducting transmission line resonator. The phase shifting angle can be tuned from 0 to 27r by simply adjusting the qubit-resonator detuning and the interaction time. Based on this gate proposal, we give a detailed procedure to implement the three-qubit quantum Fourier transform with circuit quantum eleetrodynamics (QED). A careful analysis of the decoherence sources shows that the algorithm can be achieved with a high fidelity using current circuit QED techniques.展开更多
According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. Th...According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. The results of theoretical analysis and simula- tion show that the proposed method is effective in realtime detecting of instantaneous harmonic and reactive currents in single-phase circuits. When only detecting the total reactive currents, this method does not need a phase-locked loop circuit, and it also can be used in some special applications to provide different compensations on the ground of different requirements of electric network. Compared with the other methods based on the theory of instantaneous reactive power, this method is simple and easy to realize.展开更多
In this paper, a novel Voltage-Controlled Oscillator (VCO) using the harmonic control circuit based on the quad-band Composite Right/Left-Handed (CRLH) Transmission Line (TL) is presented to reduce the phase noi...In this paper, a novel Voltage-Controlled Oscillator (VCO) using the harmonic control circuit based on the quad-band Composite Right/Left-Handed (CRLH) Transmission Line (TL) is presented to reduce the phase noise without the reduction of the frequeacy tuning range and miniaturizing the circuit size. The phase noise has been reduced by the quad-band harmonic control circuit which has the short impedance for the second- and third- and fourth- and fifth-hannonic components. The CRLH TL with two Left-Handed (LH) (backward) and two Right-Handed (RH) (forward) pass bands are used to design the quad-band harmonic control circuit. The high- Q resonator has been used to reduce the phase noise, but it has the problem of the frequency timing range reduction. However, the frequency tuning range of the proposed VCO has not reduced because the phase noise has reduced without the high-Q resonator. The miniaturization of the circuit size is achieved by using the quad-band CRLH TL instead of the conventional RH TL, The phase noise of VCO is - 124.43~ - 122.67 dBc/Hz at 100 kHz in the tuning range of 5. 729 ~5.934 GHz.展开更多
Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the constructi...Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied.展开更多
基金funded by the National Nature Science Foundation of China(Grant Nos.52175509 and 52130504)National Key Research and Development Program of China(2017YFF0204705)2021 Postdoctoral Innovation Research Plan of Hubei Province(0106100226)。
文摘Multi-level programmable photonic integrated circuits(PICs)and optical metasurfaces have gained widespread attention in many fields,such as neuromorphic photonics,opticalcommunications,and quantum information.In this paper,we propose pixelated programmable Si_(3)N_(4)PICs with record-high 20-level intermediate states at 785 nm wavelength.Such flexibility in phase or amplitude modulation is achieved by a programmable Sb_(2)S_(3)matrix,the footprint of whose elements can be as small as 1.2μm,limited only by the optical diffraction limit of anin-house developed pulsed laser writing system.We believe our work lays the foundation for laser-writing ultra-high-level(20 levels and even more)programmable photonic systems and metasurfaces based on phase change materials,which could catalyze diverse applications such as programmable neuromorphic photonics,biosensing,optical computing,photonic quantum computing,and reconfigurable metasurfaces.
文摘With the help of the time-dependent Lagrangian for a damped harmonic oscillator, the quantization of mesoscopic RLC circuit in the context of a number-phase quantization scheme is realized and the corresponding Hamiltonian operator is obtained. Then the evolution of the charge number and phase difference across the capacity are obtained. It is shown that the number-phase analysis is useful to tackle the quantization of some mesoscopic circuits and dynamical equations of the corresponding operators.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11165008 and 11365009)the Foundation of Young Scientist of Jiangxi Province,China(Grant No.20142BCB23011)the Scientific Research Foundation of Jiangxi Provincial Department of Education(Grant No.GJJ13348)
文摘We investigate the influences of the-applied-field phases and amplitudes on the coherent population trapping behavior in superconducting quantum circuits. Based on the interactions of the microwave fields with a single A-type three-level fluxonium qubit, the coherent population trapping could be obtainable and it is very sensitive to the relative phase and amplitudes of the applied fields. When the relative phase is tuned to 0 or π, the maximal atomic coherence is present and coherent population trapping occurs. While for the choice of π/2, the atomic coherence becomes weak. Meanwhile, for the fixed relative phase π/2, the value of coherence would decrease with the increase of Rabi frequency of the external field coupled with two lower levels. The responsible physical mechanism is quantum interference induced by the control fields, which is indicated in the dressed-state representation. The microwave coherent phenomenon is present in our scheme, which will have potential applications in optical communication and nonlinear optics in solid-state devices.
基金supported by the National Natural Science Foundation of China under Grant No.61371049
文摘The soft fault induced by parameter variation is one of the most challenging problems in the domain of fault diagnosis for analog circuits.A new fault location and parameter prediction approach for soft-faults diagnosis in analog circuits is presented in this paper.The proposed method extracts the original signals from the output terminals of the circuits under test(CUT) by a data acquisition board.Firstly,the phase deviation value between fault-free and faulty conditions is obtained by fitting the sampling sequence with a sine curve.Secondly,the sampling sequence is organized into a square matrix and the spectral radius of this matrix is obtained.Thirdly,the smallest error of the spectral radius and the corresponding component value are obtained through comparing the spectral radius and phase deviation value with the trend curves of them,respectively,which are calculated from the simulation data.Finally,the fault location is completed by using the smallest error,and the corresponding component value is the parameter identification result.Both simulated and experimental results show the effectiveness of the proposed approach.It is particularly suitable for the fault location and parameter identification for analog integrated circuits.
基金The project supported by the President Foundation of the Chinese Academy of Sciences
文摘For a mesoscopic L-C circuit,besides the Louisell's quantization scheme in which electric charge q andelectric current I are respectively quantized as the coordinate operator Q and momentum operator P,in this paperwe propose a new quantization scheme in the context of number-phase quantization through the standard Lagrangianformalism.The comparison between this number-phase quantization with the Josephson junction's Cooper pair number-phase-difference quantization scheme is made.
文摘We derive a formula of the nonadiabatic noncyclic Pancharatnam phase for a mesoscopic circuit with coupled inductors and capacitors. It shows that, because of coupling effect, the circuit is in squeezed quantum state initially, and the time evolution of Pancharatnam phase exhibits an oscillation in a complex way. Especially we find that when the capacity of the coupled capacitors is larger than that of other ones in the circuit, with the variation of time Pancharatnam phase becomes nearly periodic square-wave, which perhaps can provide a new approach for the realization of quantum logic gate.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12034012,12074232,12125406,and 11804204)1331KSC。
文摘The recent experimental observation of topological magnon insulator states in a superconducting circuit chain marks a breakthrough for topological physics with qubits, in which a dimerized qubit chain has been realized. Here, we extend such a dimer lattice to superlattice with arbitrary number of qubits in each unit cell in superconducting circuits, which exhibits rich topological properties. Specifically, by considering a quadrimeric superlattice, we show that the topological invariant(winding number) can be effectively characterized by the dynamics of the single-excitation quantum state through time-dependent quantities. Moreover, we explore the appearance and detection of the topological protected edge states in such a multiband qubit system. Finally, we also demonstrate the stable Bloch-like-oscillation of multiple interface states induced by the interference of them. Our proposal can be readily realized in experiment and may pave the way towards the investigation of topological quantum phases and topologically protected quantum information processing.
基金Supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China under Grant No. 200524the Program for New Century Excellent Talents of China under Grant No. 06-0920
文摘We propose a theoretical scheme for realizing the general conditional phase shift gate of charge qubits situated in a high-Q superconducting transmission line resonator. The phase shifting angle can be tuned from 0 to 27r by simply adjusting the qubit-resonator detuning and the interaction time. Based on this gate proposal, we give a detailed procedure to implement the three-qubit quantum Fourier transform with circuit quantum eleetrodynamics (QED). A careful analysis of the decoherence sources shows that the algorithm can be achieved with a high fidelity using current circuit QED techniques.
文摘According to the characteristics of single-phase circuits and demand of using active filter for real-time detecting harmonic and reactive currents, a detecting method based on Fryze's power definition is proposed. The results of theoretical analysis and simula- tion show that the proposed method is effective in realtime detecting of instantaneous harmonic and reactive currents in single-phase circuits. When only detecting the total reactive currents, this method does not need a phase-locked loop circuit, and it also can be used in some special applications to provide different compensations on the ground of different requirements of electric network. Compared with the other methods based on the theory of instantaneous reactive power, this method is simple and easy to realize.
文摘In this paper, a novel Voltage-Controlled Oscillator (VCO) using the harmonic control circuit based on the quad-band Composite Right/Left-Handed (CRLH) Transmission Line (TL) is presented to reduce the phase noise without the reduction of the frequeacy tuning range and miniaturizing the circuit size. The phase noise has been reduced by the quad-band harmonic control circuit which has the short impedance for the second- and third- and fourth- and fifth-hannonic components. The CRLH TL with two Left-Handed (LH) (backward) and two Right-Handed (RH) (forward) pass bands are used to design the quad-band harmonic control circuit. The high- Q resonator has been used to reduce the phase noise, but it has the problem of the frequency timing range reduction. However, the frequency tuning range of the proposed VCO has not reduced because the phase noise has reduced without the high-Q resonator. The miniaturization of the circuit size is achieved by using the quad-band CRLH TL instead of the conventional RH TL, The phase noise of VCO is - 124.43~ - 122.67 dBc/Hz at 100 kHz in the tuning range of 5. 729 ~5.934 GHz.
基金supported by National Key Research and Development Program of China(2016YFB0900100)
文摘Half-wavelength AC transmission(HWACT) is an ultra-long distance AC transmission technology, whose electrical distance is close to half-wavelength at the system power frequency. It is very important for the construction and operation of HWACT to analyze its fault features and corresponding protection technology. In this paper, the steady-state voltage and current characteristics of the bus bar and fault point and the steady-state overvoltage distribution along the line will be analyzed when a three-phase symmetrical short-circuit fault occurs on an HWACT line. On this basis, the threephase fault characteristics for longer transmission lines are also studied.