The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical mo...The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.展开更多
The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems wit...The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.展开更多
Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes ...Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm(R_YOLO).The algorithm incorporates the Efficient Multi-Scale Attention mechanism(EMA),the efficient Reparameterized Generalized-feature extraction module(CSPStage),the small target detection header,the Repulsion Loss function,and the context aggregation block(CABlock),which are designed to improve the model’s ability to detect targets at multiple scales and the speed of model inference.The algorithm is validated in detail on two vessel datasets.The comprehensive experimental results demonstrate that,in the infrared dataset,the YOLOv8s algorithm exhibits improvements in various performance metrics.Specifically,compared to the baseline algorithm,there is a 3.1%increase in mean average precision at a threshold of 0.5(mAP(0.5)),a 5.4%increase in recall rate,and a 2.2%increase in mAP(0.5:0.95).Simultaneously,while less than 5 times parameters,the mAP(0.5)and frames per second(FPS)exhibit an increase of 1.7%and more than 3 times,respectively,compared to the CAA_YOLO algorithm.Finally,the evaluation indexes on the visible light data set have shown an average improvement of 4.5%.展开更多
A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surfa...A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.展开更多
Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-...Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.展开更多
Based on analysis of green shipping practices of foreign ships manufacturers, ocean carriers ad port countries, their advanced experience was summarized, and its enlightenment to China's "green shipping" was analyz...Based on analysis of green shipping practices of foreign ships manufacturers, ocean carriers ad port countries, their advanced experience was summarized, and its enlightenment to China's "green shipping" was analyzed to realize China's dream of becoming " a strong shipping country" eady.展开更多
The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual...The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual ships. Therefore, when test data from ship models are directly applied to predict the performance of actual ships, test results must be subjected to empirical corrections. This study proposes a method for the reverse design of the hull model. Compared to a geometrically similar hull model, the wake field generated by the modified model is closer to that of an actual ship. A non-geometrically similar model of a Korean Research Institute of Ship and Ocean Engineering (KRISO)’s container ship (KCS) was designed. Numerical simulations were performed using this model, and its results were compared with full-scale calculation results. The deformation method of getting the wake field of full-scale ships by the non-geometrically similar model is applied to the KCS successfully.展开更多
The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seapor...The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seaports have suffered from a central problem,which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed.Many ports have taken the necessary precautions to overcome this problem,while others still suffer due to the presence of technical and financial constraints.In this paper,the barriers,interconnection standards,rules,regulations,power sources,and economic and environmental analysis related to ships,shore-side power were studied in efforts to find a solution to overcome his problem.As a case study,this paper investigates the practicability,costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga,Egypt.The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving.Moreover,environmentally,it could achieve an annual reduction in exhaust gas emissions of CO2,CO,NOx,P.M,and SO2by 276,2.32,18.87,0.825 and 3.84 tons,respectively.展开更多
In the present study, an experimental investigation of the decay of the maximum velocity and its turbulent characteristics behind a ship propeller, in "bollard pull" condition (zero speed of advance), is reported....In the present study, an experimental investigation of the decay of the maximum velocity and its turbulent characteristics behind a ship propeller, in "bollard pull" condition (zero speed of advance), is reported. Velocity measurements were performed in laboratory by use of a Laser Doppler Anemometry (LDA) measurement system. Earlier researchers described that the maximum axial velocity is constant at the initial stage of a ship's propeller jet (Fuehrer and Romisch, 1977; Blaauw and van de Kaa, 1978; Berger et al, 1981; Verhey, 1983) as reported in a pure water jet (Albertson et al., 1950; Lee et al., 2002; Dai, 2005), but a number of researchers disagreed with the constant velocity assumption. The present study found that the maximum axial velocity decays in the zone of flow establishment and the zone of established flow with different rates. The investigation provides an insight into the decays of both the maximum velocity and the maximum turbulent fluctuation in axial, tangential and radial components and the decay of the maximum turbulent kinetic energy. Empirical equations are proposed to allow coastal engineers to estimate the jet characteristics from a ship's propeller.展开更多
The descriptive capabilities of the banded speed cosmological model are shown. In particular, an in-depth analysis related to the actual physical meaning of Planck's unit is given in the framework of the banded distr...The descriptive capabilities of the banded speed cosmological model are shown. In particular, an in-depth analysis related to the actual physical meaning of Planck's unit is given in the framework of the banded distribution of physical quantities. From this analysis the richness and flexibility of the model's description capabilities is derived, with particular attention devoted to the ability of using the same relationships for describing both microcosm and macrocosm and also young and old universe. Finally the cited descriptive capabilities are used for deriving a very simple and intuitive explanation of the "darkness" of dark matter.展开更多
To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and a...To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.展开更多
The paper puts forward a method of predicting the calm water total resistance of the high speed displacement ship with transom stern.The hull surface is defined by mathematical function and design parameters.The effec...The paper puts forward a method of predicting the calm water total resistance of the high speed displacement ship with transom stern.The hull surface is defined by mathematical function and design parameters.The effects of design parameters on the total resistance are discussed.展开更多
This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity ...This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity approach of Takagi Sugeno(T S)fuzzy modeling.For each local subsystem,an optimal control is designed.Then,the parameters of local controllers are defuzzified to construct a global optimal controller.To prove the effectiveness of this control scheme,simulations are performed using the mathematical model of Esso Osaka tanker ship for set point regulation with and without disturbance and reference tracking.In addition,the simulation results are compared with that of a PID controller for further verification and validation.It has been shown that the proposed optimal controller can be used for the nonlinear ship steering with good rise time,zero steady state error and fast settling time.展开更多
Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key ro...Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key role in modern navigation technology,ship weather routing is the research focus of several scholars in this field.This study presents a hybrid genetic algorithm for the design of an optimal ship route for safe transoceanic navigation under complicated sea conditions.On the basis of the basic genetic algorithm,simulated annealing algorithm is introduced to enhance its local search ability and avoid premature convergence,with the ship’s voyage time and fuel consumption as optimization goals.Then,a mathematical model of ship weather routing is developed based on the grid system.A measure of fitness calibration is proposed,which can change the selection pressure of the algorithm as the population evolves.In addition,a hybrid crossover operator is proposed to enhance the ability to find the optimal solution and accelerate the convergence speed of the algorithm.Finally,a multi-population technique is applied to improve the robustness of the algorithm using different evolutionary strategies.展开更多
The Hong Kong Section of the Guangzhou-Shenzhen-Hong Kong High Speed Rail officially started operation on September 23,a step that makes Hong Kong part of China’s national high-speed rail network.As early as 2000,Hon...The Hong Kong Section of the Guangzhou-Shenzhen-Hong Kong High Speed Rail officially started operation on September 23,a step that makes Hong Kong part of China’s national high-speed rail network.As early as 2000,Hong Kong released the Railway Development Strategy 2000,in which regional expressways were proposed.In September,the 26-km rail link connected Hong Kong for the first time with the mainland’s 25,000-km high-speed rail network.The relatively small step Hong Kong moves forward puts its citizens within easier reach of neighboring cities in Guangdong Province,and injects new energy and vitality into Hong Kong’s development.展开更多
Background: The Unified Parkinson’s Disease Rating Scale is the most commonly used scale in the clinical study of Parkinson’s disease. However, it may fail to capture the essence of physical impairment in patients w...Background: The Unified Parkinson’s Disease Rating Scale is the most commonly used scale in the clinical study of Parkinson’s disease. However, it may fail to capture the essence of physical impairment in patients with Parkinson’s disease and thus limit responsiveness of care-givers, patients, and/or clinicians as to increasing physical disability. This study sought to compare subjective measures of physical disability in Parkinson’s disease to an objective, accurate, and proven measure of physical function-gait speed. Methods: Eighty-eight individuals with early to moderate stage Parkinson’s disease were evaluated on the Unified Parkinson’s Disease Rating Scale, the Parkinson’s disease Questionnaire 39 and during five 8 meter walking trials. Spearman correlations coefficients were used to determine the association among all variables of interest. Results: The findings demonstrate that only a fair to moderate relationship between objectively measured gait speed and physical function as measured subjectively by the clinical rating scale and as evaluated by the patients during self report. Conclusions: The results of this study suggest that commonly utilized measures of physical function in Parkinson’s disease are not highly correlated with gait speed. Because gait speed is demonstrated as a dependable proxy for physical function, the results of this study may provide a rational for the use of gait speed to provide a more accurate picture of physical function in patients with Parkinson’s disease.展开更多
The concept, although it is not new, came to surface in the last ten years with significant technological improvement and became a temporary solution for the port cities where the supply of electricity is in need. A s...The concept, although it is not new, came to surface in the last ten years with significant technological improvement and became a temporary solution for the port cities where the supply of electricity is in need. A ship shaped floatable structure with a huge power generator on board becomes the temporary but effective solution. However, these converted ex-ships are still legally ships in order to admit them sufficiently within the scope of a leading convention, which applies to marine and air pollution from ships. This issue needs research on the legal definition of the "ship" to clarify if it is a ship and to determine whether that would also fall within the concept of MARPOL.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Foundation of Jiangsu Province(Grant No.SBK2022020579)the Newton Advanced Fellowships by the Royal Society(Grant No.NAF\R1\180304).
文摘The hydrodynamic performance of a high forward-speed ship in obliquely propagating waves is numerically examined to assess both free motions and wave field in comparison with a low forward-speed ship.This numerical model is based on the time-domain potential flow theory and higher-order boundary element method,where an analytical expression is completely expanded to determine the base-unsteady coupling flow imposed on the moving condition of the ship.The ship in the numerical model may possess different advancing speeds,i.e.stationary,low speed,and high speed.The role of the water depth,wave height,wave period,and incident wave angle is analyzed by means of the accurate numerical model.It is found that the resonant motions of the high forward-speed ship are triggered by comparison with the stationary one.More specifically,a higher forward speed generates a V-shaped wave region with a larger elevation,which induces stronger resonant motions corresponding to larger wave periods.The shoaling effect is adverse to the motion of the low-speed ship,but is beneficial to the resonant motion of the high-speed ship.When waves obliquely propagate toward the ship,the V-shaped wave region would be broken due to the coupling effect between roll and pitch motions.It is also demonstrated that the maximum heave motion occurs in beam seas for stationary cases but occurs in head waves for high speeds.However,the variation of the pitch motion with period is hardly affected by wave incident angles.
基金supported by the National Natural Science Foundation of China(Grant Nos.52271278 and 52111530137)the Natural Science Found of Jiangsu Province(Grant No.BK20221389)the Newton Advanced Fellowships(Grant No.NAF\R1\180304)by the Royal Society.
文摘The constant panel method within the framework of potential flow theory in the time domain is developed for solving the hydrodynamic interactions between two parallel ships with forward speed.When solving problems within a time domain framework,the free water surface needs to simultaneously satisfy both the kinematic and dynamic boundary conditions of the free water surface.This provides conditions for adding artificial damping layers.Using the Runge−Kutta method to solve equations related to time.An upwind differential scheme is used in the present method to deal with the convection terms on the free surface to prevent waves upstream.Through the comparison with the available experimental data and other numerical methods,the present method is proved to have good mesh convergence,and satisfactory results can be obtained.The constant panel method is applied to calculate the hydrodynamic interaction responses of two parallel ships advancing in head waves.Numerical simulations are conducted on the effects of forward speed,different longitudinal and lateral distances on the motion response of two modified Wigley ships in head waves.Then further investigations are conducted on the effects of different ship types on the motion response.
文摘Aiming at defects such as low contrast in infrared ship images,uneven distribution of ship size,and lack of texture details,which will lead to unmanned ship leakage misdetection and slow detection,this paper proposes an infrared ship detection model based on the improved YOLOv8 algorithm(R_YOLO).The algorithm incorporates the Efficient Multi-Scale Attention mechanism(EMA),the efficient Reparameterized Generalized-feature extraction module(CSPStage),the small target detection header,the Repulsion Loss function,and the context aggregation block(CABlock),which are designed to improve the model’s ability to detect targets at multiple scales and the speed of model inference.The algorithm is validated in detail on two vessel datasets.The comprehensive experimental results demonstrate that,in the infrared dataset,the YOLOv8s algorithm exhibits improvements in various performance metrics.Specifically,compared to the baseline algorithm,there is a 3.1%increase in mean average precision at a threshold of 0.5(mAP(0.5)),a 5.4%increase in recall rate,and a 2.2%increase in mAP(0.5:0.95).Simultaneously,while less than 5 times parameters,the mAP(0.5)and frames per second(FPS)exhibit an increase of 1.7%and more than 3 times,respectively,compared to the CAA_YOLO algorithm.Finally,the evaluation indexes on the visible light data set have shown an average improvement of 4.5%.
基金financially supported by the National Basic Research Program of China(973 Program,Grant No.2014CB046203)
文摘A domain decomposition and matching method in the time-domain is outlined for simulating the motions of ships advancing in waves. The flow field is decomposed into inner and outer domains by an imaginary control surface, and the Rankine source method is applied to the inner domain while the transient Green function method is used in the outer domain. Two initial boundary value problems are matched on the control surface. The corresponding numerical codes are developed, and the added masses, wave exciting forces and ship motions advancing in head sea for Series 60 ship and S175 containership, are presented and verified. A good agreement has been obtained when the numerical results are compared with the experimental data and other references. It shows that the present method is more efficient because of the panel discretization only in the inner domain during the numerical calculation, and good numerical stability is proved to avoid divergence problem regarding ships with flare.
基金Supported by the Directorate for Research and Community Service,University of Indonesia(RUUI Research Laboratory 2010),Jakarta,Indonesia
文摘Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 ram, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.
文摘Based on analysis of green shipping practices of foreign ships manufacturers, ocean carriers ad port countries, their advanced experience was summarized, and its enlightenment to China's "green shipping" was analyzed to realize China's dream of becoming " a strong shipping country" eady.
基金the National Natural Science Foundation of China,the Fundamental Research Funds for the Central Universities,the Specialized Research Fund for the Doctoral Program of Higher Education
文摘The scale effect leads to large discrepancies between the wake fields of model-scale and actual ships, and causes differences in cavitation performance and exciting forces tests in predicting the performance of actual ships. Therefore, when test data from ship models are directly applied to predict the performance of actual ships, test results must be subjected to empirical corrections. This study proposes a method for the reverse design of the hull model. Compared to a geometrically similar hull model, the wake field generated by the modified model is closer to that of an actual ship. A non-geometrically similar model of a Korean Research Institute of Ship and Ocean Engineering (KRISO)’s container ship (KCS) was designed. Numerical simulations were performed using this model, and its results were compared with full-scale calculation results. The deformation method of getting the wake field of full-scale ships by the non-geometrically similar model is applied to the KCS successfully.
文摘The progress of economic globalization,the rapid growth of international trade,and the maritime transportation has played an increasingly significant role in the international supply chain.As a result,worldwide seaports have suffered from a central problem,which appears in the form of massive amounts of fuel consumed and exhaust gas fumes emitted from the ships while berthed.Many ports have taken the necessary precautions to overcome this problem,while others still suffer due to the presence of technical and financial constraints.In this paper,the barriers,interconnection standards,rules,regulations,power sources,and economic and environmental analysis related to ships,shore-side power were studied in efforts to find a solution to overcome his problem.As a case study,this paper investigates the practicability,costs and benefits of switching from onboard ship auxiliary engines to shore-side power connection for high-speed crafts called Alkahera while berthed at the port of Safaga,Egypt.The results provide the national electricity grid concept as the best economical selection with 49.03 percent of annual cost saving.Moreover,environmentally,it could achieve an annual reduction in exhaust gas emissions of CO2,CO,NOx,P.M,and SO2by 276,2.32,18.87,0.825 and 3.84 tons,respectively.
基金supported by SPUR Studentship from Queen's University Belfastsupported by the National Natural Science Foundation of China (Grant No. 51006019)Petro China Innovation Foundation from China National Petroleum Corporation (Grant No. 2010D-5006-0208)
文摘In the present study, an experimental investigation of the decay of the maximum velocity and its turbulent characteristics behind a ship propeller, in "bollard pull" condition (zero speed of advance), is reported. Velocity measurements were performed in laboratory by use of a Laser Doppler Anemometry (LDA) measurement system. Earlier researchers described that the maximum axial velocity is constant at the initial stage of a ship's propeller jet (Fuehrer and Romisch, 1977; Blaauw and van de Kaa, 1978; Berger et al, 1981; Verhey, 1983) as reported in a pure water jet (Albertson et al., 1950; Lee et al., 2002; Dai, 2005), but a number of researchers disagreed with the constant velocity assumption. The present study found that the maximum axial velocity decays in the zone of flow establishment and the zone of established flow with different rates. The investigation provides an insight into the decays of both the maximum velocity and the maximum turbulent fluctuation in axial, tangential and radial components and the decay of the maximum turbulent kinetic energy. Empirical equations are proposed to allow coastal engineers to estimate the jet characteristics from a ship's propeller.
文摘The descriptive capabilities of the banded speed cosmological model are shown. In particular, an in-depth analysis related to the actual physical meaning of Planck's unit is given in the framework of the banded distribution of physical quantities. From this analysis the richness and flexibility of the model's description capabilities is derived, with particular attention devoted to the ability of using the same relationships for describing both microcosm and macrocosm and also young and old universe. Finally the cited descriptive capabilities are used for deriving a very simple and intuitive explanation of the "darkness" of dark matter.
基金This project is supported by National Hi-tech Research and Development Program of China (863 Program, No. 2002AA421150)Specialized Re-search Fund for Doctor Program of Higher Education of China (No. 20030335091).
文摘To deal with over-shooting and gouging in high speed machining, a novel approach for velocity smooth link is proposed. Considering discrete tool path, cubic spline curve fitting is used to find dangerous points, and according to spatial geometric properties of tool path and the kinematics theory, maximum optimal velocities at dangerous points are obtained. Based on method of velocity control characteristics stored in control system, a fast algorithm for velocity smooth link is analyzed and formulated. On-line implementation results show that the proposed approach makes velocity changing more smoothly compared with traditional velocity control methods and improves productivity greatly.
文摘The paper puts forward a method of predicting the calm water total resistance of the high speed displacement ship with transom stern.The hull surface is defined by mathematical function and design parameters.The effects of design parameters on the total resistance are discussed.
基金supported in part by the National Natural Science Foundation of China (No. 61751210)the Jiangsu Natural Science Foundation of China (No. BK20171417)the Fundamental Research Funds for the Central Universities(No. NG2019002)
文摘This paper presents a method to design a control scheme for nonlinear systems using fuzzy optimal control.In the design process,the nonlinear system is first converted into local subsystems using sector non linearity approach of Takagi Sugeno(T S)fuzzy modeling.For each local subsystem,an optimal control is designed.Then,the parameters of local controllers are defuzzified to construct a global optimal controller.To prove the effectiveness of this control scheme,simulations are performed using the mathematical model of Esso Osaka tanker ship for set point regulation with and without disturbance and reference tracking.In addition,the simulation results are compared with that of a PID controller for further verification and validation.It has been shown that the proposed optimal controller can be used for the nonlinear ship steering with good rise time,zero steady state error and fast settling time.
基金funded by the Russian Foundation for Basic Research(RFBR)(No.20-07-00531).
文摘Considering the effects of increased economic globalization and global warming,developing methods for reducing shipping costs and greenhouse gas emissions in ocean transportation has become crucial.Owing to its key role in modern navigation technology,ship weather routing is the research focus of several scholars in this field.This study presents a hybrid genetic algorithm for the design of an optimal ship route for safe transoceanic navigation under complicated sea conditions.On the basis of the basic genetic algorithm,simulated annealing algorithm is introduced to enhance its local search ability and avoid premature convergence,with the ship’s voyage time and fuel consumption as optimization goals.Then,a mathematical model of ship weather routing is developed based on the grid system.A measure of fitness calibration is proposed,which can change the selection pressure of the algorithm as the population evolves.In addition,a hybrid crossover operator is proposed to enhance the ability to find the optimal solution and accelerate the convergence speed of the algorithm.Finally,a multi-population technique is applied to improve the robustness of the algorithm using different evolutionary strategies.
文摘The Hong Kong Section of the Guangzhou-Shenzhen-Hong Kong High Speed Rail officially started operation on September 23,a step that makes Hong Kong part of China’s national high-speed rail network.As early as 2000,Hong Kong released the Railway Development Strategy 2000,in which regional expressways were proposed.In September,the 26-km rail link connected Hong Kong for the first time with the mainland’s 25,000-km high-speed rail network.The relatively small step Hong Kong moves forward puts its citizens within easier reach of neighboring cities in Guangdong Province,and injects new energy and vitality into Hong Kong’s development.
文摘Background: The Unified Parkinson’s Disease Rating Scale is the most commonly used scale in the clinical study of Parkinson’s disease. However, it may fail to capture the essence of physical impairment in patients with Parkinson’s disease and thus limit responsiveness of care-givers, patients, and/or clinicians as to increasing physical disability. This study sought to compare subjective measures of physical disability in Parkinson’s disease to an objective, accurate, and proven measure of physical function-gait speed. Methods: Eighty-eight individuals with early to moderate stage Parkinson’s disease were evaluated on the Unified Parkinson’s Disease Rating Scale, the Parkinson’s disease Questionnaire 39 and during five 8 meter walking trials. Spearman correlations coefficients were used to determine the association among all variables of interest. Results: The findings demonstrate that only a fair to moderate relationship between objectively measured gait speed and physical function as measured subjectively by the clinical rating scale and as evaluated by the patients during self report. Conclusions: The results of this study suggest that commonly utilized measures of physical function in Parkinson’s disease are not highly correlated with gait speed. Because gait speed is demonstrated as a dependable proxy for physical function, the results of this study may provide a rational for the use of gait speed to provide a more accurate picture of physical function in patients with Parkinson’s disease.
文摘The concept, although it is not new, came to surface in the last ten years with significant technological improvement and became a temporary solution for the port cities where the supply of electricity is in need. A ship shaped floatable structure with a huge power generator on board becomes the temporary but effective solution. However, these converted ex-ships are still legally ships in order to admit them sufficiently within the scope of a leading convention, which applies to marine and air pollution from ships. This issue needs research on the legal definition of the "ship" to clarify if it is a ship and to determine whether that would also fall within the concept of MARPOL.