In order to predict the corrosion trendency of X100 pipeline steel in flowing oilfield produced water,the effect of flow rate on the corrosion behavior of X100 pipeline steel was studied under general dynamic conditio...In order to predict the corrosion trendency of X100 pipeline steel in flowing oilfield produced water,the effect of flow rate on the corrosion behavior of X100 pipeline steel was studied under general dynamic condition and simulated real working condition at the flow rate of 0.2,0.4,and 0.6 m·s^(-1).Potentiodynamic polarization curves and electrochemical impedance spectroscopy were used to study the corrosion behavior of X100 steel.Energy dispersive spectroscopy,X-ray diffraction and scanning electron microscopy were used to analyze corrosion product composition and micromorphology.The experimental results show that the corrosion is more serious under simulated real working conditions than that under the general dynamic conditions.In any case the corrosion current density increases with the increase of the flow rate,and the total impedance value decreases.The corrosion products include Fe_(3)O_(4),Fe_(2)O_(3),and FeOOH.The mass transfer and electrochemistry were simulated by flow coupled in COMSOL software.The multiphysical field coupling simulation results are closer to the engineering practice than the single flow field simulation,and similar results from the experiments were obtained.Both experimental and simulation results reveal that the higher flow rate is,the more serious corrosion appear and the more corrosion products accumulate.By combining experimental and COMSOL simulation data,the corrosion process model of X100 steel was proposed.展开更多
介绍了渤海海上油田二元复合驱驱油的设计与开发方案,以新型表面活性剂(非离子型表面活性剂:DMES-14、TX-100)和疏水缔合聚丙烯酰胺(HAPAM)为主。二元复合驱驱油体系主要需要双子表面活性剂双十四酸乙二酯双磺酸盐型表面活性剂(DMES-14)...介绍了渤海海上油田二元复合驱驱油的设计与开发方案,以新型表面活性剂(非离子型表面活性剂:DMES-14、TX-100)和疏水缔合聚丙烯酰胺(HAPAM)为主。二元复合驱驱油体系主要需要双子表面活性剂双十四酸乙二酯双磺酸盐型表面活性剂(DMES-14),疏水缔合聚丙烯酰胺以及取自海上油田平台的回注水。该体系同时对粘度和表面张力进行了研究。结果表明,该体系在不要求浓度的情况下可以达到超低界面张力2.48×10^(-3) m N/m,在油藏中粘度可达到55 m Pa;随后的岩心驱替试验表明,在水驱含水75%的状况下进行二元复合驱驱油效果可提高至38.6%以上。总之,该实验研究提供了非离子表面活性剂与疏水缔合水溶性聚合物驱油体系的实用信息以及可以在渤海海上油田进行大规模应用HAPAM。展开更多
基金Funded by the Beijing Municipal Natural Science Foundation(No.3192013)the National Natural Science Foundation of China(No.51774046)。
文摘In order to predict the corrosion trendency of X100 pipeline steel in flowing oilfield produced water,the effect of flow rate on the corrosion behavior of X100 pipeline steel was studied under general dynamic condition and simulated real working condition at the flow rate of 0.2,0.4,and 0.6 m·s^(-1).Potentiodynamic polarization curves and electrochemical impedance spectroscopy were used to study the corrosion behavior of X100 steel.Energy dispersive spectroscopy,X-ray diffraction and scanning electron microscopy were used to analyze corrosion product composition and micromorphology.The experimental results show that the corrosion is more serious under simulated real working conditions than that under the general dynamic conditions.In any case the corrosion current density increases with the increase of the flow rate,and the total impedance value decreases.The corrosion products include Fe_(3)O_(4),Fe_(2)O_(3),and FeOOH.The mass transfer and electrochemistry were simulated by flow coupled in COMSOL software.The multiphysical field coupling simulation results are closer to the engineering practice than the single flow field simulation,and similar results from the experiments were obtained.Both experimental and simulation results reveal that the higher flow rate is,the more serious corrosion appear and the more corrosion products accumulate.By combining experimental and COMSOL simulation data,the corrosion process model of X100 steel was proposed.
文摘介绍了渤海海上油田二元复合驱驱油的设计与开发方案,以新型表面活性剂(非离子型表面活性剂:DMES-14、TX-100)和疏水缔合聚丙烯酰胺(HAPAM)为主。二元复合驱驱油体系主要需要双子表面活性剂双十四酸乙二酯双磺酸盐型表面活性剂(DMES-14),疏水缔合聚丙烯酰胺以及取自海上油田平台的回注水。该体系同时对粘度和表面张力进行了研究。结果表明,该体系在不要求浓度的情况下可以达到超低界面张力2.48×10^(-3) m N/m,在油藏中粘度可达到55 m Pa;随后的岩心驱替试验表明,在水驱含水75%的状况下进行二元复合驱驱油效果可提高至38.6%以上。总之,该实验研究提供了非离子表面活性剂与疏水缔合水溶性聚合物驱油体系的实用信息以及可以在渤海海上油田进行大规模应用HAPAM。