We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a...We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a series of pressure waves. We give a relativistic geometric recurrence formula that connects the time when the pressure waves are produced and the time when the corresponding shocks occurred. This relation enables us to relate the pulse magnitude with the observation time. Our analysis shows that the evolution of the pressure waves leads to a fast rise and an exponential decay pulses. In determining the width of the pulses, the acceleration time is more important than that of the deceleration.展开更多
To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span...To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span><span style="font-family:;" "=""> theoretically analyzed. Based on Housner’s random shock model, the coupling mechanism between shock waves and FBG was theoretically analyzed. The result shows that the wave will change the period </span><span><span style="white-space:nowrap;">Ʌ</span></span><span style="font-family:;" "=""> and effective refractive index </span><i><span style="font-family:;" "="">n</span></i><span style="font-family:;" "=""> of FBG, and further affect the initial wavelength value. The amplitude, phase and frequency of shock wave are directly related to the wavelength drifts of FBG. The transmitting velocity of shock wave in rock is affected by lithologic characteristics. The Elastic modulus, density and Poisson’s ratio of rock influence the initial wavelength value of FBG. This study provided a theoretical basis and practical application guidance for coal or rock burst monitoring with FBG sensing.</span>展开更多
Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This wi...Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This will leave some imprints in the afterglows. We study the effect of equal arrival time surfaces numerically for various circumstances, i.e., isotropic fireballs, collimated jets, density jumps and energy injection events. For each case, a direct comparison is made between including and not including the effect. For isotropic fireballs and jets viewed on axis, the effect slightly hardens the spectra and postpones the peak time of the afterglows, but does not change the shapes of the spectra and light curves significantly. In the cases of a density jump or an energy injection, the effect smears out the variations in the afterglows markedly.展开更多
Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are locat...Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are located at cosmological distances, makes them the most energetic events ever known. For example, the observed radiation energies of some GRBs are equivalent to the total convertion into radiation of the mass energy of more than one solar mass. This is thousand times stronger than the energy of a supernova explosion. Some unconventional energy mechanism and extremely high conversion efficiency for these mysterious events are required. The discovery of host galaxies and association with supernovae at cosmological distances by the recently launched satellite of BeppoSAX and ground based radio and optical telescopes in GRB afterglow provides further support to the cosmological origin of GRBs and put strong constraints on their central engine. It is the aim of this article to review the possible central engines, energy mechanisms, dynamical and spectral evolution of GRBs, especially focusing on the afterglows in multi-wavebands.展开更多
Optical and radio afterglows arising from shocks by relativistic conical ejecta running into pre-burst massive stellar winds are revisited. Under the homogeneous thin-shell approximation and a realistic treatment for ...Optical and radio afterglows arising from shocks by relativistic conical ejecta running into pre-burst massive stellar winds are revisited. Under the homogeneous thin-shell approximation and a realistic treatment for the lateral expansion of jets, our results show that a notable break exists in the optical light curve in most cases we calculated in which the physical parameters are varied within reasonable ranges. For a relatively tenuous wind which cannot decelerate the relativistic jet to cause a light curve break within days, the wind termination shock due to the ram pressure of the surrounding medium occurs at a small radius, namely, a few times 10<SUP>17</SUP> cm. In such a structured wind environment, the jet will pass through the wind within several hours and run into the outer uniform dense medium. The resulting optical light curve flattens with a shallower drop after the jet encounters the uniform medium, and then declines deeply, triggered by runaway lateral expansion.展开更多
Gamma-ray (GRBs) and X-ray Bursts are millisecond-10 and 1000 seconds-long events of unknown origin. Recent simulations of the merger of binary neutron star systems do not generate a magnetically dominated c...Gamma-ray (GRBs) and X-ray Bursts are millisecond-10 and 1000 seconds-long events of unknown origin. Recent simulations of the merger of binary neutron star systems do not generate a magnetically dominated called funnel nor a relativistic outflow. New models for the detection the afterglow of GRB 121024A, measured 0.15 days after the burst, invoke anisotropy as required to produce the complex microphysics of realistic shocks in relativistic jets. On the other hand the non-thermal gamma-rays are supposed to be produced by a fireball of relativistic e<sup>?</sup>e<sup>+</sup> pairs that are created by annihilation of neutrino-antineutrino pairs in the vicinity of the hot, merged object. It is also known that in a system of a large number of fermions with pairs, gravitational interaction occurs a spontaneous breaking of the vacuum spatial symmetry, accompanied by gravitational mass defect. If spherical symmetry is broken, as in the known case of the merger scenario where a rapidly rotating disk can be formed and material is pulled away from rotation axis by centrifugal forces, then a baryon-free funnel along the rotation axes may allow relativistic beam of γ’s and e<sup>?</sup>e<sup>+</sup> to escape. It might lead to matter ejection with Lorentz factors of ~10<sup>2</sup> - 103</sup> which are in the right range to enable copious gamma production during shock interaction with ambient interstellar gas. Here we show that the space rays generation mechanism on a method of direct transformation of intergalactic gamma-rays to the proton current on spin shock-waves ensure precise agreement between generated proton currents (spin shock waves theory) with the angular distribution data of Galactic gamma-rays as well as for the individual pulses of gamma-/X-ray bursts. There is a precise confirmation of the generated currents (theory) with the burst radiation data characterized by the standard deviation of ±1% in intensity in relative units within the sensitivity of the equipment. Thus, it was found that the spin angular momentum conservation law (equation of dynamics of spin shock waves) in the X-ray/gamma ranges is fulfilled exactly in real time. The next step involves setting the inverse problem of determining the wave function disturbance on the differential of measured smoothing pulses. In the asymptotic large times the problem is reduced to the solutions of the functional equation with shift of the argument. This will give additional information about the change speed of the wave, as well as on the interaction.展开更多
基金Supported by the National Natural Science Foundation of China.
文摘We investigate the forming of gamma-ray burst pulses with a simple onedimensional relativistic shock model. The mechanism is that a "central engine" drives forward the nearby plasma inside the fireball to generate a series of pressure waves. We give a relativistic geometric recurrence formula that connects the time when the pressure waves are produced and the time when the corresponding shocks occurred. This relation enables us to relate the pulse magnitude with the observation time. Our analysis shows that the evolution of the pressure waves leads to a fast rise and an exponential decay pulses. In determining the width of the pulses, the acceleration time is more important than that of the deceleration.
文摘To achieve the monitor of rock burst in coal mine with fiber Bragg grating (FBG) sensing, the coupling mechanism between FBG and shock waves w<span style="font-family:;" "="">as</span><span style="font-family:;" "=""> theoretically analyzed. Based on Housner’s random shock model, the coupling mechanism between shock waves and FBG was theoretically analyzed. The result shows that the wave will change the period </span><span><span style="white-space:nowrap;">Ʌ</span></span><span style="font-family:;" "=""> and effective refractive index </span><i><span style="font-family:;" "="">n</span></i><span style="font-family:;" "=""> of FBG, and further affect the initial wavelength value. The amplitude, phase and frequency of shock wave are directly related to the wavelength drifts of FBG. The transmitting velocity of shock wave in rock is affected by lithologic characteristics. The Elastic modulus, density and Poisson’s ratio of rock influence the initial wavelength value of FBG. This study provided a theoretical basis and practical application guidance for coal or rock burst monitoring with FBG sensing.</span>
基金the National Natural Science Foundation of China.
文摘Due to the relativistic motion of gamma-ray burst remnant and its deceleration in the circumburst medium, the equal arrival time surfaces at any moment are not spherical, rather, they are distorted ellipsoids. This will leave some imprints in the afterglows. We study the effect of equal arrival time surfaces numerically for various circumstances, i.e., isotropic fireballs, collimated jets, density jumps and energy injection events. For each case, a direct comparison is made between including and not including the effect. For isotropic fireballs and jets viewed on axis, the effect slightly hardens the spectra and postpones the peak time of the afterglows, but does not change the shapes of the spectra and light curves significantly. In the cases of a density jump or an energy injection, the effect smears out the variations in the afterglows markedly.
基金a RGC grant of the Hong Kong Government and the National Natural Science Foundation of China.
文摘Gamma-ray bursts (GRBs) are the most intense transient gamma-ray events in the sky; this, together with the strong evidence (the isotropic and inhomogeneous distribution of GRBs detected by BASTE) that they are located at cosmological distances, makes them the most energetic events ever known. For example, the observed radiation energies of some GRBs are equivalent to the total convertion into radiation of the mass energy of more than one solar mass. This is thousand times stronger than the energy of a supernova explosion. Some unconventional energy mechanism and extremely high conversion efficiency for these mysterious events are required. The discovery of host galaxies and association with supernovae at cosmological distances by the recently launched satellite of BeppoSAX and ground based radio and optical telescopes in GRB afterglow provides further support to the cosmological origin of GRBs and put strong constraints on their central engine. It is the aim of this article to review the possible central engines, energy mechanisms, dynamical and spectral evolution of GRBs, especially focusing on the afterglows in multi-wavebands.
基金Supported by the National Natural Science Foundation of China.
文摘Optical and radio afterglows arising from shocks by relativistic conical ejecta running into pre-burst massive stellar winds are revisited. Under the homogeneous thin-shell approximation and a realistic treatment for the lateral expansion of jets, our results show that a notable break exists in the optical light curve in most cases we calculated in which the physical parameters are varied within reasonable ranges. For a relatively tenuous wind which cannot decelerate the relativistic jet to cause a light curve break within days, the wind termination shock due to the ram pressure of the surrounding medium occurs at a small radius, namely, a few times 10<SUP>17</SUP> cm. In such a structured wind environment, the jet will pass through the wind within several hours and run into the outer uniform dense medium. The resulting optical light curve flattens with a shallower drop after the jet encounters the uniform medium, and then declines deeply, triggered by runaway lateral expansion.
文摘Gamma-ray (GRBs) and X-ray Bursts are millisecond-10 and 1000 seconds-long events of unknown origin. Recent simulations of the merger of binary neutron star systems do not generate a magnetically dominated called funnel nor a relativistic outflow. New models for the detection the afterglow of GRB 121024A, measured 0.15 days after the burst, invoke anisotropy as required to produce the complex microphysics of realistic shocks in relativistic jets. On the other hand the non-thermal gamma-rays are supposed to be produced by a fireball of relativistic e<sup>?</sup>e<sup>+</sup> pairs that are created by annihilation of neutrino-antineutrino pairs in the vicinity of the hot, merged object. It is also known that in a system of a large number of fermions with pairs, gravitational interaction occurs a spontaneous breaking of the vacuum spatial symmetry, accompanied by gravitational mass defect. If spherical symmetry is broken, as in the known case of the merger scenario where a rapidly rotating disk can be formed and material is pulled away from rotation axis by centrifugal forces, then a baryon-free funnel along the rotation axes may allow relativistic beam of γ’s and e<sup>?</sup>e<sup>+</sup> to escape. It might lead to matter ejection with Lorentz factors of ~10<sup>2</sup> - 103</sup> which are in the right range to enable copious gamma production during shock interaction with ambient interstellar gas. Here we show that the space rays generation mechanism on a method of direct transformation of intergalactic gamma-rays to the proton current on spin shock-waves ensure precise agreement between generated proton currents (spin shock waves theory) with the angular distribution data of Galactic gamma-rays as well as for the individual pulses of gamma-/X-ray bursts. There is a precise confirmation of the generated currents (theory) with the burst radiation data characterized by the standard deviation of ±1% in intensity in relative units within the sensitivity of the equipment. Thus, it was found that the spin angular momentum conservation law (equation of dynamics of spin shock waves) in the X-ray/gamma ranges is fulfilled exactly in real time. The next step involves setting the inverse problem of determining the wave function disturbance on the differential of measured smoothing pulses. In the asymptotic large times the problem is reduced to the solutions of the functional equation with shift of the argument. This will give additional information about the change speed of the wave, as well as on the interaction.