This paper examines the Shock/Shock Interactions(SSI)between the body and wing of aircraft in supersonic flows.The body is simplified to a flat wedge and the wing is assumed to be a sharp wing.The theoretical spatia...This paper examines the Shock/Shock Interactions(SSI)between the body and wing of aircraft in supersonic flows.The body is simplified to a flat wedge and the wing is assumed to be a sharp wing.The theoretical spatial dimension reduction method,which transforms the 3D problem into a 2D one,is used to analyze the SSI between the body and wing.The temperature and pressure behind the Mach stem induced by the wing and body are obtained,and the wave configurations in the corner are determined.Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative(NND)finite difference scheme.Good agreements between the theoretical and numerical results are obtained.Additionally,the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically.The influences of wedge angle are significant,whereas the effects of sweep angle on wave configurations are negligible.This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows.展开更多
A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume m...A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs.展开更多
The interactions of oblique/bow shock waves are the key flow phenomena restricting the design and aerothermodynamic performance of high-speed vehicles.Type Ⅲ and Type Ⅳ Shock/Shock Interactions(SSIs)have been extens...The interactions of oblique/bow shock waves are the key flow phenomena restricting the design and aerothermodynamic performance of high-speed vehicles.Type Ⅲ and Type Ⅳ Shock/Shock Interactions(SSIs)have been extensively investigated,as such interactions can induce abnormal aerodynamic heating problems in hypersonic flows of vehicles.The transition process between these two distinct types of shock/shock interactions remains unclear.In the present study,a subclass of shock/shock interaction configuration is revealed and defined as Type Ⅲa.Type Ⅲa interaction can induce much more severe aerodynamic heating than a Type Ⅳ interaction which was ever reported to be the most serious in literature.The intense aerodynamic heating observed in this configuration highlights a new design point for the thermal protection system of hypersonic vehicles.A secondary Mach interaction between shock waves in the supersonic flow path of a Type Ⅲ configuration is demonstrated to be the primary mechanism for such a subclass of shock/shock interaction configuration.展开更多
A shock interaction problem is solved with finite difference methods for a hypersonic fiow of air with chemical reactions. If a body has two concave cornerst a secondary shock is formed in the shock layer and it meets...A shock interaction problem is solved with finite difference methods for a hypersonic fiow of air with chemical reactions. If a body has two concave cornerst a secondary shock is formed in the shock layer and it meets the main shock later.As the two shocks meet, the flow becomes singular at the interaction point, and a new main shock, a contact discontinuity and an expansion wave appear as a result of interaction between the two shocks. Therefore, the problem is very complicated.Using proper combinations of implicit and explicit finite difference schemes according to the property of the equations and the boundary conditions, we compute the fiow behind the interaction point successfully.展开更多
The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to...The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.展开更多
This paper explores theoretical solutions to the three-dimensional (3D) shock/shock interaction induced by 3D asymmetrical intersecting compression wedges in supersonic inviscid flows. For Mach interactions, an anal...This paper explores theoretical solutions to the three-dimensional (3D) shock/shock interaction induced by 3D asymmetrical intersecting compression wedges in supersonic inviscid flows. For Mach interactions, an analytical method known as spa- tial-dimension reduction, which transforms the problem of 3D steady shock/shock interaction into a two-dimensional (2D) pseudo-steady problem on cross sections, is used to obtain the solutions in the vicinity of the Mach stem. The theoretical solu- tions include the pressure, temperature, density, Mach number behind the Mach stem, and total pressure recovery coefficient. Numerical simulations are performed to validate the theoretical results. Here, the NND scheme is employed by solving 3D in- viscid Euler equations, and good agreements are obtained. The asymmetry of the flow characteristics induced by the wedge angle and sweep angle are thoroughly discussed.展开更多
Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to app...Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.展开更多
An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done i...An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.展开更多
The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically a...The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.展开更多
A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achieveme...A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.展开更多
The interaction of shock waves is investigated for the following nonstrictly hyperbolic system: [GRAPHICS] The interaction of shock waves is complicated, with new types of shock waves, and new singula rities in the de...The interaction of shock waves is investigated for the following nonstrictly hyperbolic system: [GRAPHICS] The interaction of shock waves is complicated, with new types of shock waves, and new singula rities in the dependence of interaction on the relative positions of the three states separated by shock waves. Several ideas are introduced to helo organize and clarify the new phenomena.展开更多
This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonal analysis and correlation analysis to them. Based on the zonal analysis an ...This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonal analysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussed in detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.展开更多
The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both conside...The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both considered. The bubble is of the same size and is accelerated by a planar shock of different Mach numbers (Ma). The re- suits of low Ma cases agree quantitatively with those of experiments [G. Layes, O. Le M4tayer. Phys. Fluids 19 (2007) 042105]. With the increase of Ma, the final geometry of the bubble becomes quite different, the com- pression ratio is highly raised, and the time-dependent mean bubble velocity is also influenced. The compression ratios measured can be well normalized when Ma is low, while less agreement has been achieved for high Ma cases. In addition, the mixedness between two fluids is enhanced greatly as Ma increases. Some existed scaling laws of these quantities for the shock wave strength cannot be directly applied to high Ma cases.展开更多
The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature an...The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the Increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.展开更多
An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4...An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers.展开更多
The transition between regular reflection (RR) and Mach reflection (MR) of type V shock-shock interaction on a double-wedge geometry with high temperature non-equilibrium effects is investigated by extended shock-...The transition between regular reflection (RR) and Mach reflection (MR) of type V shock-shock interaction on a double-wedge geometry with high temperature non-equilibrium effects is investigated by extended shock-polar method and numerical simulation. First, the critical angles of transition from detachment criterion and yon Neumann criterion are determined by the extended shock-polar method considering the non-equilibrium effects. Then wave patterns and the transition process are numerically obtained. Results of the critical transition angles from shock-polar calculation and numerical simulation show evident disagreement, indicating transition mechanism between RR and MR of type V interaction is changed. By comparing with the frozen counterpart, it is also found that non-equilibrium effects lead to a larger critical wedge angle and a larger hysteresis interval.展开更多
In this paper, we study the vanishing viscosity limit for non-isentropic gas dy- namics with interacting shocks. Given any entropy solution of non-isentropic gas dynamics which consists of two different families of sh...In this paper, we study the vanishing viscosity limit for non-isentropic gas dy- namics with interacting shocks. Given any entropy solution of non-isentropic gas dynamics which consists of two different families of shocks interacting at some positive time, we show that such solution is the vanishing viscosity limit of a family of smooth global solutions for a viscous system of conservation law. We remark that, after the interacting time, not only shocks but also contact discontinuity are generated.展开更多
The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It...The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It provides qualitative information mainly concerning the overall flow structure, such as the turbulent boundary layer separation, reattachment locations and the dimensionalities of the flow. Besides, it can also give understanding of the surface streamlines, vortices in separation region and the corner effect of duct flow. Two kinds of crystals with different viscosities are used in experiments to analyze the viscosity effect. Results are compared with schlieren picture, confirming the effectiveness of liquid crystal in flow-visualization.展开更多
This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry bounda...This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry boundary condition in the spanwise direction at free-stream Mach numbers in 3D.The simulations are performed using an in-house compressible supersonic solver“Open SBLIFVM”.Two free stream Mach numbers 2.5,and3 are used in the current work,and the simulated results are compared with the aspect ratio 1 simulations by Mangalagiri and Jammy.The inflow is initialized with a similarity solution;its Reynolds number based on the boundary layer thickness is adjusted such that the Reynolds number at the start of the ramp is kept at 3×10^(5)for all simulations.From the results,it is evident that the introduction of sidewalls resulted in a shorter centerline separation length when compared with the two-dimensional(2D)simulations.This contradicts the results at Mach 2 by Mangalgiri and Jammy where the vortex observed at Mach 2 in the central separation region disappeared with increasing free-stream Mach number.Additionally,the topology of interaction shifted from owl-like separation of the second kind to the first kind when the freestream Mach number increased from2 to 2.5.It can be concluded that the interaction topology is crucial to the increase or decrease of the central separation length when compared to 2D simulations.展开更多
基金supported by the Fundamental Research Funds for the Central Universities of China (No. 31020170QD087)
文摘This paper examines the Shock/Shock Interactions(SSI)between the body and wing of aircraft in supersonic flows.The body is simplified to a flat wedge and the wing is assumed to be a sharp wing.The theoretical spatial dimension reduction method,which transforms the 3D problem into a 2D one,is used to analyze the SSI between the body and wing.The temperature and pressure behind the Mach stem induced by the wing and body are obtained,and the wave configurations in the corner are determined.Numerical validations are conducted by solving the inviscid Euler equations in 3D with a Non-oscillatory and Non-free-parameters Dissipative(NND)finite difference scheme.Good agreements between the theoretical and numerical results are obtained.Additionally,the effects of the wedge angle and sweep angle on wave configurations and flow field are considered numerically and theoretically.The influences of wedge angle are significant,whereas the effects of sweep angle on wave configurations are negligible.This paper provides useful information for the design and thermal protection of aircraft in supersonic and hypersonic flows.
文摘A two-dimensional Reynolds-averaged Navier-Stokes solver is applied to analyze the aerodynamic behavior of the Shock/Boundary-Layer interaction of rocket with a boosted The K-ε turbulence model and a finite volume method in a unstructured body-fitted curvilinear coordinates have been used. The results indicate that the separation and the reattachment occur in the Boundary-Layer of the main rocket because of the shock interaction. The shape of the booster nose effects the flow field obviously. In the case of the hemisphere booster nose the pressure has complicate distributions and the separation is very clear. The distance between the booster and main rocket has the evident effect on the flow field. If the distance is smaller the pressure coefficient is bigger the separation zone even the separation bubble occurs.
基金co-supported by the National Key Research and Development Plan of China(No.2019YFA0405204)the National Natural Science Foundation of China(Nos.12172365,12072353 and 12132017)。
文摘The interactions of oblique/bow shock waves are the key flow phenomena restricting the design and aerothermodynamic performance of high-speed vehicles.Type Ⅲ and Type Ⅳ Shock/Shock Interactions(SSIs)have been extensively investigated,as such interactions can induce abnormal aerodynamic heating problems in hypersonic flows of vehicles.The transition process between these two distinct types of shock/shock interactions remains unclear.In the present study,a subclass of shock/shock interaction configuration is revealed and defined as Type Ⅲa.Type Ⅲa interaction can induce much more severe aerodynamic heating than a Type Ⅳ interaction which was ever reported to be the most serious in literature.The intense aerodynamic heating observed in this configuration highlights a new design point for the thermal protection system of hypersonic vehicles.A secondary Mach interaction between shock waves in the supersonic flow path of a Type Ⅲ configuration is demonstrated to be the primary mechanism for such a subclass of shock/shock interaction configuration.
文摘A shock interaction problem is solved with finite difference methods for a hypersonic fiow of air with chemical reactions. If a body has two concave cornerst a secondary shock is formed in the shock layer and it meets the main shock later.As the two shocks meet, the flow becomes singular at the interaction point, and a new main shock, a contact discontinuity and an expansion wave appear as a result of interaction between the two shocks. Therefore, the problem is very complicated.Using proper combinations of implicit and explicit finite difference schemes according to the property of the equations and the boundary conditions, we compute the fiow behind the interaction point successfully.
基金supported by the National Natural Science Foundation of China (Grants 11372333, 90916028)
文摘The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D intersecting wedges were studied theoretically and numerically.A new method called "spatial dimension reduction" was used to analyze theoretically the location and Mach number behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sections, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method,including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems.Theoretical results were compared with numerical results,and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.
基金supported by the National Natural Science Foundation of China (Grant No. 11372333)
文摘This paper explores theoretical solutions to the three-dimensional (3D) shock/shock interaction induced by 3D asymmetrical intersecting compression wedges in supersonic inviscid flows. For Mach interactions, an analytical method known as spa- tial-dimension reduction, which transforms the problem of 3D steady shock/shock interaction into a two-dimensional (2D) pseudo-steady problem on cross sections, is used to obtain the solutions in the vicinity of the Mach stem. The theoretical solu- tions include the pressure, temperature, density, Mach number behind the Mach stem, and total pressure recovery coefficient. Numerical simulations are performed to validate the theoretical results. Here, the NND scheme is employed by solving 3D in- viscid Euler equations, and good agreements are obtained. The asymmetry of the flow characteristics induced by the wedge angle and sweep angle are thoroughly discussed.
文摘Shock formation due to flow compressibility and its interaction with boundary layers has adverse effects on aerodynamic characteristics, such as drag increase and flow separation. The objective of this paper is to appraise the practicability of weakening shock waves and, hence, reducing the wave drag in transonic flight regime using a two-dimensional jagged wall and thereby to gain an appropriate jagged wall shape for future empirical study. Different shapes of the jagged wall, including rectangular, circular, and triangular shapes, were employed. The numerical method was validated by experimental and numerical studies involving transonic flow over the NACA0012 airfoil, and the results presented here closely match previous experimental and numerical results. The impact of parameters, including shape and the length-to-spacing ratio of a jagged wall, was studied on aerodynamic forces and flow field. The results revealed that applying a jagged wall method on the upper surface of an airfoil changes the shock structure significantly and disintegrates it, which in turn leads to a decrease in wave drag. It was also found that the maximum drag coefficient decrease of around 17 % occurs with a triangular shape, while the maximum increase in aerodynamic efficiency(lift-to-drag ratio)of around 10 % happens with a rectangular shape at an angle of attack of 2.26?.
文摘An experimental study and a numerical simulation were conducted to investigate the mechanical and thermodynamic processes involved in the interaction between shock waves and low density foam. The experiment was done in a stainless shock tube (80 mm in inner diameter, 10 mm in wall thickness and 5 360 mm in length). The velocities of the incident and reflected compression waves in the foam were measured by using piezo-ceramic pressure sensors. The end-wall peak pressure behind the reflected wave in the foam was measured by using a crystal piezoelectric sensor. It is suggested that the high end-wall pressure may be caused by a rapid contact between the foam and the end-wall surface. Both open-cell and closed-cell foams with different length and density were tested. Through comparing the numerical and experimental end-wall pressure, the permeability coefficients α and β are quantitatively determined.
基金The project suported partially by National Natural Science Foundation of China
文摘The reflection and diffraction of a planar shock wave around a circular cylinder are a typical problem of the complex nonlinear shock wave phenomena in literature.It has long been studied experimentally,analytically as well as numerically.Takayama in 1987 obtained clear experimental pictures ofisopycnics in shock tube under the condi- tion that the impinging shock wave propagates as far as 3 diameters away from the cylinder.To know more complete- ly the whole unsteady process,it is desirable to get experimental results in a region which is more than 10 diameters away from the cylinder.This is what has been done in this paper by using the pulsed laser holographic interferometry for several shock Mach numbers of the impinging shock. Results for several moments are shown,giving more know- ledge about the whole unsteady flow field.This is useful for a reliable and complete understanding of the changing force acting on the cylinder,and provides interesting data to check the performance of many recently developed high resolution numerical methods for unsteady shock wave calculation.
基金supported by the National Key Basic Research and Development Program (No.2014CB744100)
文摘A novel third-order optimized symmetric weighted essentially non-oscillatory(WENO-OS3)scheme is used to simulate the hypersonic shock wave/boundary layer interactions.Firstly,the scheme is presented with the achievement of low dissipation in smooth region and robust shock-capturing capabilities in discontinuities.The Maxwell slip boundary conditions are employed to consider the rarefied effect near the surface.Secondly,several validating tests are given to show the good resolution of the WENO-OS3 scheme and the feasibility of the Maxwell slip boundary conditions.Finally,hypersonic flows around the hollow cylinder truncated flare(HCTF)and the25°/55°sharp double cone are studied.Discussions are made on the characteristics of the hypersonic shock wave/boundary layer interactions with and without the consideration of the slip effect.The results indicate that the scheme has a good capability in predicting heat transfer with a high resolution for describing fluid structures.With the slip boundary conditions,the separation region at the corner is smaller and the prediction is more accurate than that with no-slip boundary conditions.
文摘The interaction of shock waves is investigated for the following nonstrictly hyperbolic system: [GRAPHICS] The interaction of shock waves is complicated, with new types of shock waves, and new singula rities in the dependence of interaction on the relative positions of the three states separated by shock waves. Several ideas are introduced to helo organize and clarify the new phenomena.
文摘This paper presents briefly the recent progress on study of swept shock wave/boundary layer interactions with emphasis on application of zonal analysis and correlation analysis to them. Based on the zonal analysis an overall framework of complicated interaction flow structure including both surface flowfield and space flowfield is discussed. Based on correlation analysis the conical interactions induced by four families of shock wave generators have been discussed in detail. Some control parameter and physical mechanism of conical interaction have been revealed. Finally some aspects of the problem and the prospects for future work are suggested.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11232011 and 11402262the 111 Project under Grant No B07033the China Postdoctoral Science Foundation Funded Project under Grant No 2014M561833
文摘The interaction of a shock wave with a spherical helium bubble is investigated numerically by using the high- resolution piecewise parabolic method (PPM), in which the viscous and turbulence effects are both considered. The bubble is of the same size and is accelerated by a planar shock of different Mach numbers (Ma). The re- suits of low Ma cases agree quantitatively with those of experiments [G. Layes, O. Le M4tayer. Phys. Fluids 19 (2007) 042105]. With the increase of Ma, the final geometry of the bubble becomes quite different, the com- pression ratio is highly raised, and the time-dependent mean bubble velocity is also influenced. The compression ratios measured can be well normalized when Ma is low, while less agreement has been achieved for high Ma cases. In addition, the mixedness between two fluids is enhanced greatly as Ma increases. Some existed scaling laws of these quantities for the shock wave strength cannot be directly applied to high Ma cases.
文摘The influence of a nontotal reflection on the interaction of a reflected shock wave with the boundary layer in a reflected shock tunnel has been investigated. The calculating method of the velocity, the temperature and the Mach number profiles in the boundary layer in reflected shock fixed coordinates has been obtained. To account for equilibrium real gas effects of nitrogen, the numerical results show that the minimum Mach number in the boundary layer has been moved from the wall into the boundary layer with the increasing of the incident shock Mach number. The minimum Mach number, the shock angle in the bifurcated foot and the jet velocity along the wall to the end plate are reduced owing to the Increasing of the area of nozzle throat. The numerical results are in good agreement with measurements.
基金The project supported by China Academy of Launch Vehicle Technology
文摘An experimental study was conducted on shock wave turbulent boundary layer interactions caused by a blunt swept fin-plate configuration at Mach numbers of 5.0, 7.8, 9.9 for a Reynolds number range of (1.0.similar to 4.7) x 10(7)/m. Detailed heat transfer and pressure distributions were measured at fin deflection angles of up to 30 degrees for a sweepback angle of 67.6 degrees. Surface oil flow patterns and liquid crystal thermograms as well as schlieren pictures of fin shock shape were taken. The study shows that the flow was separated at deflection of 10 degrees and secondary separation were detected at deflection of theta greater than or equal to 20 degrees. The heat transfer and pressure distributions on flat plate showed an extensive plateau region followed by a distinct dip and local peak close to the fin foot. Measurements of the plateau pressure and heat transfer were in good agreement with existing prediction methods, but pressure and heating peak measurements at M greater than or equal to 6 were significantly lower than predicted by the simple prediction techniques at lower Mach numbers.
文摘The transition between regular reflection (RR) and Mach reflection (MR) of type V shock-shock interaction on a double-wedge geometry with high temperature non-equilibrium effects is investigated by extended shock-polar method and numerical simulation. First, the critical angles of transition from detachment criterion and yon Neumann criterion are determined by the extended shock-polar method considering the non-equilibrium effects. Then wave patterns and the transition process are numerically obtained. Results of the critical transition angles from shock-polar calculation and numerical simulation show evident disagreement, indicating transition mechanism between RR and MR of type V interaction is changed. By comparing with the frozen counterpart, it is also found that non-equilibrium effects lead to a larger critical wedge angle and a larger hysteresis interval.
基金Xiaoding Shi was supported by National Natural Sciences Foundation of China(11471321)Yan Yong was supported by National Natural Sciences Foundation of China(11201301)
文摘In this paper, we study the vanishing viscosity limit for non-isentropic gas dy- namics with interacting shocks. Given any entropy solution of non-isentropic gas dynamics which consists of two different families of shocks interacting at some positive time, we show that such solution is the vanishing viscosity limit of a family of smooth global solutions for a viscous system of conservation law. We remark that, after the interacting time, not only shocks but also contact discontinuity are generated.
文摘The flow visualization technique using shear-sensitive liquid crystal is applied to the investigation of a Mach 2 internal supersonic flow with pseudo-shock wave (PSW) in a pressure-vacuum supersonic wind tunnel. It provides qualitative information mainly concerning the overall flow structure, such as the turbulent boundary layer separation, reattachment locations and the dimensionalities of the flow. Besides, it can also give understanding of the surface streamlines, vortices in separation region and the corner effect of duct flow. Two kinds of crystals with different viscosities are used in experiments to analyze the viscosity effect. Results are compared with schlieren picture, confirming the effectiveness of liquid crystal in flow-visualization.
基金sponsored by the Department of Science and Technology,Science and Engineering Research Board(SERB),Core Research(Grant No.CRG/2020/03859)。
文摘This study investigates the three-dimensional(3D)effects introduced by the end walls for an aspect ratio of1 in ramp-induced shock wave boundary layer interactions.The simulations are performed using a symmetry boundary condition in the spanwise direction at free-stream Mach numbers in 3D.The simulations are performed using an in-house compressible supersonic solver“Open SBLIFVM”.Two free stream Mach numbers 2.5,and3 are used in the current work,and the simulated results are compared with the aspect ratio 1 simulations by Mangalagiri and Jammy.The inflow is initialized with a similarity solution;its Reynolds number based on the boundary layer thickness is adjusted such that the Reynolds number at the start of the ramp is kept at 3×10^(5)for all simulations.From the results,it is evident that the introduction of sidewalls resulted in a shorter centerline separation length when compared with the two-dimensional(2D)simulations.This contradicts the results at Mach 2 by Mangalgiri and Jammy where the vortex observed at Mach 2 in the central separation region disappeared with increasing free-stream Mach number.Additionally,the topology of interaction shifted from owl-like separation of the second kind to the first kind when the freestream Mach number increased from2 to 2.5.It can be concluded that the interaction topology is crucial to the increase or decrease of the central separation length when compared to 2D simulations.