As a cell cycle regulator, the Myb-related CDC5 protein was reported to be essential for the G2 phase of the cell cycle in yeast and animals, but little is known about its function in plants. Here we report the functi...As a cell cycle regulator, the Myb-related CDC5 protein was reported to be essential for the G2 phase of the cell cycle in yeast and animals, but little is known about its function in plants. Here we report the functional characterization of the CDC5 gene in Arabidopsis thaliana. Arabidopsis CDC5 (AtCDC5) is mainly expressed in tissues with high cell division activity, and is expressed throughout the entire process of embryo formation. The AtCDC5 loss-of-function mutant is embryonic lethal. In order to investigate the function of AtCDC5 in vivo, we generated AtCDC5-RNAi plants in which the expression of AtCDC5 was reduced by RNA interference. We found that the G2 to M (G2/M) phase transition was affected in the AtCDC5-RNAi plants, and that endoreduplication was increased. Additionally, the maintenance of shoot apical meristem (SAM) function was disturbed in the AtCDC5-RNAi plants, in which both the WUSCHEL (WUS)- CLAVATA (CLV) and the SHOOT MERISTEMLESS (STM) pathways were impaired. In situ hybridization analysis showed that the expression of STMwas greatly reduced in the shoot apical cells of the AtCDC5-RNAi plants. Moreover, cyclinB1 or Histone4 was found to be expressed in some of these cells when the transcript of STM was undetectable. These results suggest that AtCDC5 is essential for the G2/M phase transition and may regulate the function of SAM by controlling the expression ofSTMand WUS.展开更多
Background:Manual topping is a routine agronomic practice for balancing the vegetative and reproductive growth of cotton(Gossypium hirsutum)in China,but its cost-effectiveness has decreased over time.Therefore,there i...Background:Manual topping is a routine agronomic practice for balancing the vegetative and reproductive growth of cotton(Gossypium hirsutum)in China,but its cost-effectiveness has decreased over time.Therefore,there is an urgent need to replace manual topping with new approaches,such as biological topping.In this study,we examined the function of Gh REV transcription factors(a classⅢhomeodomain-leucine zipper family,HD-ZIPⅢ)in regulating the development of shoot apical meristem(SAM)in cotton with the purpose of providing candidate genes for biological topping of cotton in the future.Results:We cloned four orthologous genes of At REV in cotton,namely Gh REV1,Gh REV2,Gh REV3,and Gh REV4.All the Gh REVs expressed in roots,stem,leaves,and SAM.Compared with Gh REV1 and Gh REV3,the expression level of Gh REV2 and Gh REV4 was higher in the SAM.However,only Gh REV2 had transcriptional activity.Gh REV2 is localized in the nucleus;and silencing it via virus-induced gene silencing(VIGS)produced an abnormal SAM.Two key genes,Gh WUSA10 and Gh STM,which involved in regulating the development of plant SAM,showed about 50%reduction in their transcripts in VIGS-Gh REV2 plants.Conclusion:Gh REV2 positively regulates the development of cotton SAM by regulating Gh WUSA10 and Gh STM potentially.展开更多
It is vital to determine the effective photoperiods of maize for making full use of tropical germplasm, which is the foundation for determining the effect of latitude and planting date on the development of photoperio...It is vital to determine the effective photoperiods of maize for making full use of tropical germplasm, which is the foundation for determining the effect of latitude and planting date on the development of photoperiod-sensitive maize cultivars. The objective of this study is to determine the photoperiod-sensitive inductive phase using reciprocal transfer between long- day (LD) (15 h d^-1) and short-day conditions (SD) (9 h d^-1). For Huangzao 4 and CML288, days to tassel and pollen shedding were recorded, and stem apical meristems (SAM) were observed by a laser scanning confocal microscope. The results show that the seedlings are insensitive to photoperiod when they are very young (juvenile). However, after this period, LD delays flowering and increases the leaf numbers below the inflorescence, and the length of the interval of the photoperiod-sensitive inductive phase is longer under LD conditions than under SD conditions. Transferred from SD to LD, plants show a sudden decrease in leaf numbers once sufficient SD has been received for flower commitment. While transferred from LD to SD, plants have a continuous increase in leaf numbers during the photoperiod sensitive inductive phase under LD conditions. At the same time, when plants are competent to flowers, the obvious morphology is the elongation of maize SAM. There is an obvious variance of the photoperiod sensitive phase under LD and SD conditions in different maize.展开更多
The shoot apical meristem(SAM)is responsible for overall shoot growth by generating all aboveground structures.Recent research has revealed that the SAM displays an autonomous heat stress(HS)memory of a previous non-l...The shoot apical meristem(SAM)is responsible for overall shoot growth by generating all aboveground structures.Recent research has revealed that the SAM displays an autonomous heat stress(HS)memory of a previous non-lethal HS event.Considering the importance of the SAM for plant growth,it is essential to determine how its thermomemory is mechanistically controlled.Here,we report that HEAT SHOCK TRAN-SCRIPTION FACTOR A7b(HSFA7b)plays a crucial role in this process in Arabidopsis,as the absence of functional HSFA7b results in the temporal suppression of SAM activity after thermopriming.We found that HSFA7b directly regulates ethylene response at the SAM by binding to the promoter of the key ethylene signaling gene ETHYLENE-INSENSITIVE 3 to establish thermotolerance.Moreover,we demonstrated that HSFA7b regulates the expression of ETHYLENE OVERPRODUCER 1(ETO1)and ETO1-LIKE 1,both of which encode ethylene biosynthesis repressors,thereby ensuring ethylene homeostasis at the SAM.Taken together,these results reveal a crucial and tissue-specic role for HSFA7b in thermomemory at the Arabidopsis SAM.展开更多
Angiosperm seeds usually consist of two major parts: the embryo and the endosperm. However, the molec- ular mechanism(s) underlying embryo and endosperm development remains largely unknown, particularly in rice, th...Angiosperm seeds usually consist of two major parts: the embryo and the endosperm. However, the molec- ular mechanism(s) underlying embryo and endosperm development remains largely unknown, particularly in rice, the model cereal. Here, we report the identification and functional characterization of the rice GIANT EMBRYO (GE) gene. Mutation of GE resulted in a large embryo in the seed, which was caused by excessive expansion of scuteUum cells. Post-embryonic growth of ge seedling was severely inhibited due to defective shoot apical meristem (SAM) mainte- nance. Map-based cloning revealed that GE encodes a CYP78A subfamily P450 monooxygenase that is localized to the endoplasmic reticulum. GE is expressed predominantly in the scutellar epithelium, the interface region between embryo and endosperm. Overexpression of GE promoted cell proliferation and enhanced rice plant growth and grain yield, but reduced embryo size, suggesting that GE is critical for coordinating rice embryo and endosperm development. Moreover, transgenic Arabidopsis plants overexpressing AtCYP78AlO, a GE homolog, also produced bigger seeds, implying a con- served role for the CYP78A subfamily of P450s in regulating seed development. Taken together, our results indicate that GE plays critical roles in regulating embryo development and SAM maintenance.展开更多
The shoot apical meristem (SAM) is a population of undifferentiated cells at the tip of the shoot axis that establishes early during plant embryogenesis and gives rise to all shoot organs throughout the plant's lif...The shoot apical meristem (SAM) is a population of undifferentiated cells at the tip of the shoot axis that establishes early during plant embryogenesis and gives rise to all shoot organs throughout the plant's life. A plethora of different families of transcription factors (TFs) play a key role in establishing the equilibrium between cell differentiation and stem cell maintenance in the SAM. Fine tuning of these regulatory proteins is crucial for a proper and fast SAM response to environmental and hormonal cues, and for development progression. One effective way to rapidly inactivate TFs involves regulated proteolysis by the ubiquitin/26S proteasome system (UPS). However, a possible role of UPS-dependent protein degradation in the regulation of key SAM TFs has not been thoroughly investigated. Here, we summarize recent evidence supporting a role for the UPS in SAM maintenance and function. We integrate this survey with an in silico analysis of publicly-available microarray databases which identified ubiquitin ligases that are expressed in specific areas within the SAM, suggesting that they may regulate or act downstream of meristem-specific factors.展开更多
In plants, the shoot apical meristem (SAM) is essential for the growth of aboveground organs. However, little is known about its molecular responses to abiotic stresses. Here, we show that the SAM of Arabidopsis thali...In plants, the shoot apical meristem (SAM) is essential for the growth of aboveground organs. However, little is known about its molecular responses to abiotic stresses. Here, we show that the SAM of Arabidopsis thaliana displays an autonomous heat-stress (HS) memory of a previous non-lethal HS, allowing the SAM to regain growth after exposure to an otherwise lethal HS several days later. Using RNA sequencing, we identified genes participating in establishing the SAM's HS transcriptional memory, including the stem cell (SC) regulators CLAVATA1 (CLV1) and CLV3, HEAT SHOCK PROTEIN 17.6A (HSP17.6A), and the primary carbohydrate metabolism gene FRUCTOSE-BISPHOSPHATE ALDOLASE 6 (FBA6). We demonstrate that sugar availability is essential for survival of plants at high temperature. HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2A) directly regulates the expression of HSP17.6A and FBA6 by binding to the heat-shock elements in their promoters, indicating that HSFA2 is required for transcriptional activation of SAM memory genes. Collectively, these findings indicate that plants have evolved a sophisticated protection mechanism to maintain SCs and, hence, their capacity to re-initiate shoot growth after stress release.展开更多
Malformed fruits depreciate a plant’s market value.In tomato(Solanum lycopersicum),fruit malformation is associated with the multi-locule trait,which involves genes regulating shoot apical meristem(SAM)development.Th...Malformed fruits depreciate a plant’s market value.In tomato(Solanum lycopersicum),fruit malformation is associated with the multi-locule trait,which involves genes regulating shoot apical meristem(SAM)development.The expression pattern of TOPLESS3(SITPL3)throughout SAM development prompted us to investigate its functional significance via RNA interference(RNAi)and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9(Cas9)-mediated gene editing.Lower SITPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination(DAG5)stage.Differentially expressed genes in the SAM of wild-type(WT)and SITPL3-RNAi plants,identified by transcriptome deep sequencing(RNA-seq),were enriched in the gibberellin(GA)biosynthesis and plant hormone signaling pathways.Moreover,exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype,indicating that SITPL3 affects SAM size by mediating auxin and GA levels in the SAM.Furthermore,SITPL3 interacted with WUSCHEL(SIWUS),which plays an important role in SAM size maintenance.We conducted RNA-seq and DNA affinity purification followed by sequencing(DAP-seq)analyses to identify the genes regulated by SITPL3 and SIWUS in the SAM and to determine how they regulate SAM size.We detected24 overlapping genes regulated by SITPL3 and SIWUS and harboring an SIWUS-binding motif in their promoters.Furthermore,functional annotation revealed a notable enrichment for functions in auxin transport,auxin signal transduction,and GA biosynthesis.Dual-luciferase assays also revealed that SITPL3 enhances SIWUS-mediated regulation(repression and activation)of SIPIN3 and SIGA2 ox4 transcription,indicating that the SITPL3-SIWUS module regulates SAM size by mediating auxin distribution and GA levels,and perturbations of this module result in enlarged SAM.These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SITPL3-SIWUS module as a key regulator.展开更多
Stem cells in plants,established during embry-ogenesis,are located in the centers of the shoot apical meristem(SAM)and the root apical meristem(RAM).Stem cells in SAM have a capacity to renew themselves and to produce...Stem cells in plants,established during embry-ogenesis,are located in the centers of the shoot apical meristem(SAM)and the root apical meristem(RAM).Stem cells in SAM have a capacity to renew themselves and to produce new organs and tissues indefinitely.Although fully differentiated organs such as leaves do not contain stem cells,cells in such organs do have the capacity to re-establish new stem cells,especially under the induction of phytohormones in vitro.Cytokinin and auxin are critical in creating position signals in the SAM to maintain the stem cell organizing center and to position the new organ primordia,respectively.This review addresses the distinct features of plant stem cells and focuses on how stem cell renewal and differentiation are regulated in SAMs.展开更多
An Arabidopsis mutant induced by T-DNA insertion was studied with respect to its phenotype,microstructure of shoot apical meristem(SAM)and histochemical localization of the GUS gene in comparison with the wild type.Ph...An Arabidopsis mutant induced by T-DNA insertion was studied with respect to its phenotype,microstructure of shoot apical meristem(SAM)and histochemical localization of the GUS gene in comparison with the wild type.Phenotypical observation found that the mutant exhibited a dwarf phenotype with smaller organs(such as smaller leaves,shorter petioles),and slower development and flowering time compared to the wild type.Optical microscopic analysis of the mutant showed that it had a smaller and more flattened SAM,with reduced cell layers and a shortened distance between two leaf primordia compared with the wild type.In addition,analysis of the histo-chemical localization of the GUS gene revealed that it was specifically expressed in the SAM and the vascular tissue of the mutant,which suggests that the gene trapped by T-DNA may function in the SAM,and T-DNA insertion could influence the functional activity of the related gene in the mutant,leading to alterations in the SAM and a series of phenotypes in the mutant.展开更多
Tissues and organs within a living organism are coordinated,but the underlying mechanisms are not well understood.The shoot apical meristem(SAM)continually produces lateral organs,such as leaves,from its peripheral zo...Tissues and organs within a living organism are coordinated,but the underlying mechanisms are not well understood.The shoot apical meristem(SAM)continually produces lateral organs,such as leaves,from its peripheral zone.Because of their close proximity,SAM and lateral organs interact during plant development.Existing lateral organs influence the positions of newly formed organs to determine the phyllotaxis.The SAM not only produces lateral organs,but also influences their morphogenesis.In particular,the SAM promotes leaf polarity determination and leaf blade formation.Furthermore,lateral organs help the SAM to maintain homeostasis by restricting stem cell activity.Recent advances have started to elucidate how SAM and lateral organs patterning and growth are coordinated in the shoot apex.In this review,we discuss recent findings on the interaction between SAM and lateral organs during plant development.In particular,polar auxin transport appears to be a commonly used coordination mechanism.展开更多
The shoot meristem generates the entire shoot system and is precisely maintained throughout the life cycle under various environmental challenges.In this study,we identified a prion-like domain(PrD)in the key shoot me...The shoot meristem generates the entire shoot system and is precisely maintained throughout the life cycle under various environmental challenges.In this study,we identified a prion-like domain(PrD)in the key shoot meristem regulator SHOOT MERISTEMLESS(STM),which distinguishes STM from other related KNOX1 proteins.We demonstrated that PrD stimulates STM to form nuclear condensates,which are required for maintaining the shoot meristem.STM nuclear condensate formation is stabilized by selected PrD-containing STM-interacting BELL proteins in vitro and in vivo.Moreover,condensation of STM promotes its interaction with the Mediator complex subunit MED8 and thereby enhances its transcriptional activity.Thus,condensate formation emerges as a novel regulatory mechanism of shoot meristem functions.Furthermore,we found that the formation of STM condensates is enhanced upon salt stress,which allows enhanced salt tolerance and increased shoot branching.Our findings highlight that the transcription factor partitioning plays an important role in cell fate determination and might also act as a tunable environmental acclimation mechanism.展开更多
基金Acknowledgments The authors thank Dr Liying Du (Peking University, China) for technical help on the flow cytometric analysis. The authors also thank Dr Zhongchi Liu (University of Maryland, USA), Dr Chun-Ming Liu (Institute of Botany CAS, China), Dr Terry Matthew (University of Southampton, UK), Professor Daochun Kong (Peking University, China) and Dr Naomi Nakayama (Yale University, USA) for critical comments and valuable discussion. This work was supported by the National Natural Science Foundation of China (GN 30625002 to L-J Qu).
文摘As a cell cycle regulator, the Myb-related CDC5 protein was reported to be essential for the G2 phase of the cell cycle in yeast and animals, but little is known about its function in plants. Here we report the functional characterization of the CDC5 gene in Arabidopsis thaliana. Arabidopsis CDC5 (AtCDC5) is mainly expressed in tissues with high cell division activity, and is expressed throughout the entire process of embryo formation. The AtCDC5 loss-of-function mutant is embryonic lethal. In order to investigate the function of AtCDC5 in vivo, we generated AtCDC5-RNAi plants in which the expression of AtCDC5 was reduced by RNA interference. We found that the G2 to M (G2/M) phase transition was affected in the AtCDC5-RNAi plants, and that endoreduplication was increased. Additionally, the maintenance of shoot apical meristem (SAM) function was disturbed in the AtCDC5-RNAi plants, in which both the WUSCHEL (WUS)- CLAVATA (CLV) and the SHOOT MERISTEMLESS (STM) pathways were impaired. In situ hybridization analysis showed that the expression of STMwas greatly reduced in the shoot apical cells of the AtCDC5-RNAi plants. Moreover, cyclinB1 or Histone4 was found to be expressed in some of these cells when the transcript of STM was undetectable. These results suggest that AtCDC5 is essential for the G2/M phase transition and may regulate the function of SAM by controlling the expression ofSTMand WUS.
基金supported by The National Natural Science Foundation of China(31571588)。
文摘Background:Manual topping is a routine agronomic practice for balancing the vegetative and reproductive growth of cotton(Gossypium hirsutum)in China,but its cost-effectiveness has decreased over time.Therefore,there is an urgent need to replace manual topping with new approaches,such as biological topping.In this study,we examined the function of Gh REV transcription factors(a classⅢhomeodomain-leucine zipper family,HD-ZIPⅢ)in regulating the development of shoot apical meristem(SAM)in cotton with the purpose of providing candidate genes for biological topping of cotton in the future.Results:We cloned four orthologous genes of At REV in cotton,namely Gh REV1,Gh REV2,Gh REV3,and Gh REV4.All the Gh REVs expressed in roots,stem,leaves,and SAM.Compared with Gh REV1 and Gh REV3,the expression level of Gh REV2 and Gh REV4 was higher in the SAM.However,only Gh REV2 had transcriptional activity.Gh REV2 is localized in the nucleus;and silencing it via virus-induced gene silencing(VIGS)produced an abnormal SAM.Two key genes,Gh WUSA10 and Gh STM,which involved in regulating the development of plant SAM,showed about 50%reduction in their transcripts in VIGS-Gh REV2 plants.Conclusion:Gh REV2 positively regulates the development of cotton SAM by regulating Gh WUSA10 and Gh STM potentially.
文摘It is vital to determine the effective photoperiods of maize for making full use of tropical germplasm, which is the foundation for determining the effect of latitude and planting date on the development of photoperiod-sensitive maize cultivars. The objective of this study is to determine the photoperiod-sensitive inductive phase using reciprocal transfer between long- day (LD) (15 h d^-1) and short-day conditions (SD) (9 h d^-1). For Huangzao 4 and CML288, days to tassel and pollen shedding were recorded, and stem apical meristems (SAM) were observed by a laser scanning confocal microscope. The results show that the seedlings are insensitive to photoperiod when they are very young (juvenile). However, after this period, LD delays flowering and increases the leaf numbers below the inflorescence, and the length of the interval of the photoperiod-sensitive inductive phase is longer under LD conditions than under SD conditions. Transferred from SD to LD, plants show a sudden decrease in leaf numbers once sufficient SD has been received for flower commitment. While transferred from LD to SD, plants have a continuous increase in leaf numbers during the photoperiod sensitive inductive phase under LD conditions. At the same time, when plants are competent to flowers, the obvious morphology is the elongation of maize SAM. There is an obvious variance of the photoperiod sensitive phase under LD and SD conditions in different maize.
基金funding Collaborative Research Centre 973"Priming and Memory of Organismic Responses to Stress" (www.sfb973.de)the European Union’s Horizon 2020 Research and Innovation Programme for funding project PlantaSYST (SGA-CSA No.739582 under FPA No.664620)+1 种基金the European Regional Development Fund for funding project BG05M2OP001-1.003-001-C01 through the Bulgarian"Science and Education for Smart Growth"Operational Programme,and the MPI-MP and the University of Potsdam for financial support.B.M.-R.and S.J.thank the International Max Planck Research School"Primary Metabolism and Plant Growth" (IMPRS-PMPG)for support.J.J.O.thanks the DFG (OL 767/1-1)Leibniz Institute of Vegetable and Ornamental Crops for funding.
文摘The shoot apical meristem(SAM)is responsible for overall shoot growth by generating all aboveground structures.Recent research has revealed that the SAM displays an autonomous heat stress(HS)memory of a previous non-lethal HS event.Considering the importance of the SAM for plant growth,it is essential to determine how its thermomemory is mechanistically controlled.Here,we report that HEAT SHOCK TRAN-SCRIPTION FACTOR A7b(HSFA7b)plays a crucial role in this process in Arabidopsis,as the absence of functional HSFA7b results in the temporal suppression of SAM activity after thermopriming.We found that HSFA7b directly regulates ethylene response at the SAM by binding to the promoter of the key ethylene signaling gene ETHYLENE-INSENSITIVE 3 to establish thermotolerance.Moreover,we demonstrated that HSFA7b regulates the expression of ETHYLENE OVERPRODUCER 1(ETO1)and ETO1-LIKE 1,both of which encode ethylene biosynthesis repressors,thereby ensuring ethylene homeostasis at the SAM.Taken together,these results reveal a crucial and tissue-specic role for HSFA7b in thermomemory at the Arabidopsis SAM.
基金Natural Science Foundation of China grants,by the CAS International Partnership Program for Creative Research Teams
文摘Angiosperm seeds usually consist of two major parts: the embryo and the endosperm. However, the molec- ular mechanism(s) underlying embryo and endosperm development remains largely unknown, particularly in rice, the model cereal. Here, we report the identification and functional characterization of the rice GIANT EMBRYO (GE) gene. Mutation of GE resulted in a large embryo in the seed, which was caused by excessive expansion of scuteUum cells. Post-embryonic growth of ge seedling was severely inhibited due to defective shoot apical meristem (SAM) mainte- nance. Map-based cloning revealed that GE encodes a CYP78A subfamily P450 monooxygenase that is localized to the endoplasmic reticulum. GE is expressed predominantly in the scutellar epithelium, the interface region between embryo and endosperm. Overexpression of GE promoted cell proliferation and enhanced rice plant growth and grain yield, but reduced embryo size, suggesting that GE is critical for coordinating rice embryo and endosperm development. Moreover, transgenic Arabidopsis plants overexpressing AtCYP78AlO, a GE homolog, also produced bigger seeds, implying a con- served role for the CYP78A subfamily of P450s in regulating seed development. Taken together, our results indicate that GE plays critical roles in regulating embryo development and SAM maintenance.
基金supported by the Executive Programme of Scientific and Technological Cooperation between Italy and China(2010-2012)of the Italian Ministry of Foreign Affairs(MAE),Direzione Generale per la Promozione e la Co-operazione Culturale,with the contribution of the Ministero dell'Istruzione dell'Università e della Ricerca(MIUR)Project:Control of substrate degradation in plant development and environmental responseby the Agri-food CNR strategic project(AG.P01.003):Genetic,Physiological and Molecular Basis of Development and Differentiation of Model and Crop Species of Interest to Agri-food in response to endogenous and environmental cues
文摘The shoot apical meristem (SAM) is a population of undifferentiated cells at the tip of the shoot axis that establishes early during plant embryogenesis and gives rise to all shoot organs throughout the plant's life. A plethora of different families of transcription factors (TFs) play a key role in establishing the equilibrium between cell differentiation and stem cell maintenance in the SAM. Fine tuning of these regulatory proteins is crucial for a proper and fast SAM response to environmental and hormonal cues, and for development progression. One effective way to rapidly inactivate TFs involves regulated proteolysis by the ubiquitin/26S proteasome system (UPS). However, a possible role of UPS-dependent protein degradation in the regulation of key SAM TFs has not been thoroughly investigated. Here, we summarize recent evidence supporting a role for the UPS in SAM maintenance and function. We integrate this survey with an in silico analysis of publicly-available microarray databases which identified ubiquitin ligases that are expressed in specific areas within the SAM, suggesting that they may regulate or act downstream of meristem-specific factors.
基金Sequencing datasets are available at the NCBI Sequencing Read Archive, BioProject ID PRJNA505602.
文摘In plants, the shoot apical meristem (SAM) is essential for the growth of aboveground organs. However, little is known about its molecular responses to abiotic stresses. Here, we show that the SAM of Arabidopsis thaliana displays an autonomous heat-stress (HS) memory of a previous non-lethal HS, allowing the SAM to regain growth after exposure to an otherwise lethal HS several days later. Using RNA sequencing, we identified genes participating in establishing the SAM's HS transcriptional memory, including the stem cell (SC) regulators CLAVATA1 (CLV1) and CLV3, HEAT SHOCK PROTEIN 17.6A (HSP17.6A), and the primary carbohydrate metabolism gene FRUCTOSE-BISPHOSPHATE ALDOLASE 6 (FBA6). We demonstrate that sugar availability is essential for survival of plants at high temperature. HEAT SHOCK TRANSCRIPTION FACTOR A2 (HSFA2A) directly regulates the expression of HSP17.6A and FBA6 by binding to the heat-shock elements in their promoters, indicating that HSFA2 is required for transcriptional activation of SAM memory genes. Collectively, these findings indicate that plants have evolved a sophisticated protection mechanism to maintain SCs and, hence, their capacity to re-initiate shoot growth after stress release.
基金funded by the National Natural Science Foundation of China(31870286 and 31902013)the Natural Science Foundation of Guangdong Province(2022A1515012278,2017A030313114,2018A030310205,and 2021A1515010528)the General Project of Guangzhou City(201804010031)。
文摘Malformed fruits depreciate a plant’s market value.In tomato(Solanum lycopersicum),fruit malformation is associated with the multi-locule trait,which involves genes regulating shoot apical meristem(SAM)development.The expression pattern of TOPLESS3(SITPL3)throughout SAM development prompted us to investigate its functional significance via RNA interference(RNAi)and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9(Cas9)-mediated gene editing.Lower SITPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination(DAG5)stage.Differentially expressed genes in the SAM of wild-type(WT)and SITPL3-RNAi plants,identified by transcriptome deep sequencing(RNA-seq),were enriched in the gibberellin(GA)biosynthesis and plant hormone signaling pathways.Moreover,exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype,indicating that SITPL3 affects SAM size by mediating auxin and GA levels in the SAM.Furthermore,SITPL3 interacted with WUSCHEL(SIWUS),which plays an important role in SAM size maintenance.We conducted RNA-seq and DNA affinity purification followed by sequencing(DAP-seq)analyses to identify the genes regulated by SITPL3 and SIWUS in the SAM and to determine how they regulate SAM size.We detected24 overlapping genes regulated by SITPL3 and SIWUS and harboring an SIWUS-binding motif in their promoters.Furthermore,functional annotation revealed a notable enrichment for functions in auxin transport,auxin signal transduction,and GA biosynthesis.Dual-luciferase assays also revealed that SITPL3 enhances SIWUS-mediated regulation(repression and activation)of SIPIN3 and SIGA2 ox4 transcription,indicating that the SITPL3-SIWUS module regulates SAM size by mediating auxin distribution and GA levels,and perturbations of this module result in enlarged SAM.These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SITPL3-SIWUS module as a key regulator.
基金supported in part by funds from the Ministry of Science and Technology of China(Nos.2006CB910600 and 2007CB948200).
文摘Stem cells in plants,established during embry-ogenesis,are located in the centers of the shoot apical meristem(SAM)and the root apical meristem(RAM).Stem cells in SAM have a capacity to renew themselves and to produce new organs and tissues indefinitely.Although fully differentiated organs such as leaves do not contain stem cells,cells in such organs do have the capacity to re-establish new stem cells,especially under the induction of phytohormones in vitro.Cytokinin and auxin are critical in creating position signals in the SAM to maintain the stem cell organizing center and to position the new organ primordia,respectively.This review addresses the distinct features of plant stem cells and focuses on how stem cell renewal and differentiation are regulated in SAMs.
基金This study was supported by funds from the National Natural Science Foundation of China(Grant No.30370087)“Chun Hui Program”of the Ministry of the Education(No.Z2004-1-62002).
文摘An Arabidopsis mutant induced by T-DNA insertion was studied with respect to its phenotype,microstructure of shoot apical meristem(SAM)and histochemical localization of the GUS gene in comparison with the wild type.Phenotypical observation found that the mutant exhibited a dwarf phenotype with smaller organs(such as smaller leaves,shorter petioles),and slower development and flowering time compared to the wild type.Optical microscopic analysis of the mutant showed that it had a smaller and more flattened SAM,with reduced cell layers and a shortened distance between two leaf primordia compared with the wild type.In addition,analysis of the histo-chemical localization of the GUS gene revealed that it was specifically expressed in the SAM and the vascular tissue of the mutant,which suggests that the gene trapped by T-DNA may function in the SAM,and T-DNA insertion could influence the functional activity of the related gene in the mutant,leading to alterations in the SAM and a series of phenotypes in the mutant.
基金The work of the authors was funded by the National Natural Science Foundation of China Grants 31872835,31861143021 and 31825002CAS Key Research Project of the Frontier Science Grant ZDBS-LYSM012.YJ is a Newton Advanced Fellow of the Royal Society(NAF\R1\180125).
文摘Tissues and organs within a living organism are coordinated,but the underlying mechanisms are not well understood.The shoot apical meristem(SAM)continually produces lateral organs,such as leaves,from its peripheral zone.Because of their close proximity,SAM and lateral organs interact during plant development.Existing lateral organs influence the positions of newly formed organs to determine the phyllotaxis.The SAM not only produces lateral organs,but also influences their morphogenesis.In particular,the SAM promotes leaf polarity determination and leaf blade formation.Furthermore,lateral organs help the SAM to maintain homeostasis by restricting stem cell activity.Recent advances have started to elucidate how SAM and lateral organs patterning and growth are coordinated in the shoot apex.In this review,we discuss recent findings on the interaction between SAM and lateral organs during plant development.In particular,polar auxin transport appears to be a commonly used coordination mechanism.
基金the Natural Science Foundation of China(grants 31825002 and 32230010 to Y.J.,and 32270345 to Y.W.)X.C.is a fellow of the China Postdoctoral Science Foundation(2020M670515)the Newton Advanced Fellowship of the Royal Society(NAF\R1\180125).
文摘The shoot meristem generates the entire shoot system and is precisely maintained throughout the life cycle under various environmental challenges.In this study,we identified a prion-like domain(PrD)in the key shoot meristem regulator SHOOT MERISTEMLESS(STM),which distinguishes STM from other related KNOX1 proteins.We demonstrated that PrD stimulates STM to form nuclear condensates,which are required for maintaining the shoot meristem.STM nuclear condensate formation is stabilized by selected PrD-containing STM-interacting BELL proteins in vitro and in vivo.Moreover,condensation of STM promotes its interaction with the Mediator complex subunit MED8 and thereby enhances its transcriptional activity.Thus,condensate formation emerges as a novel regulatory mechanism of shoot meristem functions.Furthermore,we found that the formation of STM condensates is enhanced upon salt stress,which allows enhanced salt tolerance and increased shoot branching.Our findings highlight that the transcription factor partitioning plays an important role in cell fate determination and might also act as a tunable environmental acclimation mechanism.