期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Binaural Speech Separation Algorithm Based on Long and Short Time Memory Networks 被引量:1
1
作者 Lin Zhou Siyuan Lu +3 位作者 Qiuyue Zhong Ying Chen Yibin Tang Yan Zhou 《Computers, Materials & Continua》 SCIE EI 2020年第6期1373-1386,共14页
Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial featur... Speaker separation in complex acoustic environment is one of challenging tasks in speech separation.In practice,speakers are very often unmoving or moving slowly in normal communication.In this case,the spatial features among the consecutive speech frames become highly correlated such that it is helpful for speaker separation by providing additional spatial information.To fully exploit this information,we design a separation system on Recurrent Neural Network(RNN)with long short-term memory(LSTM)which effectively learns the temporal dynamics of spatial features.In detail,a LSTM-based speaker separation algorithm is proposed to extract the spatial features in each time-frequency(TF)unit and form the corresponding feature vector.Then,we treat speaker separation as a supervised learning problem,where a modified ideal ratio mask(IRM)is defined as the training function during LSTM learning.Simulations show that the proposed system achieves attractive separation performance in noisy and reverberant environments.Specifically,during the untrained acoustic test with limited priors,e.g.,unmatched signal to noise ratio(SNR)and reverberation,the proposed LSTM based algorithm can still outperforms the existing DNN based method in the measures of PESQ and STOI.It indicates our method is more robust in untrained conditions. 展开更多
关键词 Binaural speech separation long and short time memory networks feature vectors ideal ratio mask
下载PDF
Traffic flow prediction of urban road network based on LSTM-RF model 被引量:3
2
作者 ZHAO Shu-xu ZHANG Bao-hua 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2020年第2期135-142,共8页
Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of meth... Traffic flow prediction,as the basis of signal coordination and travel time prediction,has become a research point in the field of transportation.For traffic flow prediction,researchers have proposed a variety of methods,but most of these methods only use the time domain information of traffic flow data to predict the traffic flow,ignoring the impact of spatial correlation on the prediction of target road segment flow,which leads to poor prediction accuracy.In this paper,a traffic flow prediction model called as long short time memory and random forest(LSTM-RF)was proposed based on the combination model.In the process of traffic flow prediction,the long short time memory(LSTM)model was used to extract the time sequence features of the predicted target road segment.Then,the predicted value of LSTM and the collected information of adjacent upstream and downstream sections were simultaneously used as the input features of the random forest model to analyze the spatial-temporal correlation of traffic flow,so as to obtain the final prediction results.The traffic flow data of 132 urban road sections collected by the license plate recognition system in Guiyang City were tested and verified.The results show that the method is better than the single model in prediction accuracy,and the prediction error is obviously reduced compared with the single model. 展开更多
关键词 traffic flow prediction long short time memory and random forest(LSTM-RF)model random forest combination model spatial-temporal correlation
下载PDF
A Regularized LSTM Method for Predicting Remaining Useful Life of Rolling Bearings 被引量:6
3
作者 Zhao-Hua Liu Xu-Dong Meng +4 位作者 Hua-Liang Wei Liang Chen Bi-Liang Lu Zhen-Heng Wang Lei Chen 《International Journal of Automation and computing》 EI CSCD 2021年第4期581-593,共13页
Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accur... Rotating machinery is important to industrial production. Any failure of rotating machinery, especially the failure of rolling bearings, can lead to equipment shutdown and even more serious incidents. Therefore, accurate residual life prediction plays a crucial role in guaranteeing machine operation safety and reliability and reducing maintenance cost. In order to increase the forecasting precision of the remaining useful life(RUL) of the rolling bearing, an advanced approach combining elastic net with long short-time memory network(LSTM) is proposed, and the new approach is referred to as E-LSTM. The E-LSTM algorithm consists of an elastic mesh and LSTM, taking temporal-spatial correlation into consideration to forecast the RUL through the LSTM. To solve the over-fitting problem of the LSTM neural network during the training process, the elastic net based regularization term is introduced to the LSTM structure.In this way, the change of the output can be well characterized to express the bearing degradation mode. Experimental results from the real-world data demonstrate that the proposed E-LSTM method can obtain higher stability and relevant values that are useful for the RUL forecasting of bearing. Furthermore, these results also indicate that E-LSTM can achieve better performance. 展开更多
关键词 Deep learning fault diagnosis fault prognosis long and short time memory network(LSTM) rolling bearing rotating machinery REGULARIZATION remaining useful life prediction(RUL) recurrent neural network(RNN)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部