期刊文献+
共找到2,544篇文章
< 1 2 128 >
每页显示 20 50 100
Research on passenger flow control at metro transfer stations based on real-time flow calculation of streamlines
1
作者 Bin Lei Zhuoxing Hou +3 位作者 Yifei Suo Wei Liu Linlin Luo Dongbo Lei 《Railway Sciences》 2024年第6期684-703,共20页
Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recu... Purpose – The volume of passenger traffic at metro transfer stations serves as a pivotal metric for theorchestration of crowd flow management. Given the intricacies of crowd dynamics within these stations andthe recurrent instances of substantial passenger influxes, a methodology predicated on stochastic processesand the principle of user equilibrium is introduced to facilitate real-time traffic flow estimation within transferstation streamlines.Design/methodology/approach – The synthesis of stochastic process theory with streamline analysisengenders a probabilistic model of intra-station pedestrian traffic dynamics. Leveraging real-time passengerflow data procured from monitoring systems within the transfer station, a gradient descent optimizationtechnique is employed to minimize the cost function, thereby deducing the dynamic distribution of categorizedpassenger flows. Subsequently, adhering to the tenets of user equilibrium, the Frank–Wolfe algorithm isimplemented to allocate the intra-station categorized passenger flows across various streamlines, ascertainingthe traffic volume for each.Findings – Utilizing the Xiaozhai Station of the Xi’an Metro as a case study, the Anylogic simulation softwareis engaged to emulate the intra-station crowd dynamics, thereby substantiating the efficacy of the proposedpassenger flow estimation model. The derived solutions are instrumental in formulating a crowd controlstrategy for Xiaozhai Station during the peak interval from 17:30 to 18:00 on a designated day, yielding crowdmanagement interventions that offer insights for the orchestration of passenger flow and operationalgovernance within metro stations.Originality/value – The construction of an estimation methodology for the real-time streamline traffic flowaugments the model’s dataset, supplanting estimated values derived from surveys or historical datasets withreal-time computed traffic data, thereby enhancing the precision and immediacy of crowd flow managementwithin metro stations. 展开更多
关键词 Metro transfer station passenger flow control flow streamline Stochastic process User equilibrium
下载PDF
Railway Passenger Flow Forecasting by Integrating Passenger Flow Relationship and Spatiotemporal Similarity
2
作者 Song Yu Aiping Luo Xiang Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期1877-1893,共17页
Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the... Railway passenger flow forecasting can help to develop sensible railway schedules,make full use of railway resources,and meet the travel demand of passengers.The structure of passenger flow in railway networks and the spatiotemporal relationship of passenger flow among stations are two distinctive features of railway passenger flow.Most of the previous studies used only a single feature for prediction and lacked correlations,resulting in suboptimal performance.To address the above-mentioned problem,we proposed the railway passenger flow prediction model called Flow-Similarity Attention Graph Convolutional Network(F-SAGCN).First,we constructed the passenger flow relations graph(RG)based on the Origin-Destination(OD).Second,the Passenger Flow Fluctuation Similarity(PFFS)algorithm is used to measure the similarity of passenger flow between stations,which helps construct the spatiotemporal similarity graph(SG).Then,we determine the weights of the mutual influence of different stations at different times through an attention mechanism and extract spatiotemporal features through graph convolution on the RG and SG.Finally,we fused the spatiotemporal features and the original temporal features of stations for prediction.The comparison experiments on a railway bureau’s accurate railway passenger flow data show that the proposed F-SAGCN method improved the prediction accuracy and reduced the mean absolute percentage error(MAPE)of 46 stations to 7.93%. 展开更多
关键词 Railway passenger flow forecast graph convolution neural network passenger flow relationship passenger flow similarity
下载PDF
Dynamic train dwell time forecasting:a hybrid approach to address the influence of passenger flow fluctuations
3
作者 Zishuai Pang Liwen Wang +2 位作者 Shengjie Wang Li Li Qiyuan Peng 《Railway Engineering Science》 2023年第4期351-369,共19页
Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay... Train timetables and operations are defined by the train running time in sections,dwell time at stations,and headways between trains.Accurate estimation of these factors is essential to decision-making for train delay reduction,train dispatching,and station capacity estimation.In the present study,we aim to propose a train dwell time model based on an averaging mechanism and dynamic updating to address the challenges in the train dwell time prediction problem(e.g.,dynamics over time,heavy-tailed distribution of data,and spatiotemporal relationships of factors)for real-time train dispatching.The averaging mechanism in the present study is based on multiple state-of-the-art base predictors,enabling the proposed model to integrate the advantages of the base predictors in addressing the challenges in terms of data attributes and data distributions.Then,considering the influence of passenger flow on train dwell time,we use a dynamic updating method based on exponential smoothing to improve the performance of the proposed method by considering the real-time passenger amount fluctuations(e.g.,passenger soars in peak hours or passenger plunges during regular periods).We conduct experiments with the train operation data and passenger flow data from the Chinese high-speed railway line.The results show that due to the advantages over the base predictors,the averaging mechanism can more accurately predict the dwell time at stations than its counterparts for different prediction horizons regarding predictive errors and variances.Further,the experimental results show that dynamic smoothing can significantly improve the accuracy of the proposed model during passenger amount changes,i.e.,15.4%and 15.5%corresponding to the mean absolute error and root mean square error,respectively.Based on the proposed predictor,a feature importance analysis shows that the planned dwell time and arrival delay are the two most important factors to dwell time.However,planned time has positive influences,whereas arrival delay has negative influences. 展开更多
关键词 Train operations Dwell time passenger flow Averaging mechanism Dynamic smoothing
下载PDF
Hybrid Model for Short-Term Passenger Flow Prediction in Rail Transit
4
作者 Yinghua Song Hairong Lyu Wei Zhang 《Journal on Big Data》 2023年第1期19-40,共22页
A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pres... A precise and timely forecast of short-term rail transit passenger flow provides data support for traffic management and operation,assisting rail operators in efficiently allocating resources and timely relieving pressure on passenger safety and operation.First,the passenger flow sequence models in the study are broken down using VMD for noise reduction.The objective environment features are then added to the characteristic factors that affect the passenger flow.The target station serves as an additional spatial feature and is mined concurrently using the KNN algorithm.It is shown that the hybrid model VMD-CLSMT has a higher prediction accuracy,by setting BP,CNN,and LSTM reference experiments.All models’second order prediction effects are superior to their first order effects,showing that the residual network can significantly raise model prediction accuracy.Additionally,it confirms the efficacy of supplementary and objective environmental features. 展开更多
关键词 Short-term passenger flow forecast variational mode decomposition long and short-term memory convolutional neural network residual network
下载PDF
Short-term inbound rail transit passenger flow prediction based on BILSTM model and influence factor analysis
5
作者 Qianru Qi Rongjun Cheng Hongxia Ge 《Digital Transportation and Safety》 2023年第1期12-22,共11页
Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model i... Accurate and real-time passenger flow prediction of rail transit is an important part of intelligent transportation systems(ITS).According to previous studies,it is found that the prediction effect of a single model is not good for datasets with large changes in passenger flow characteristics and the deep learning model with added influencing factors has better prediction accuracy.In order to provide persuasive passenger flow forecast data for ITS,a deep learning model considering the influencing factors is proposed in this paper.In view of the lack of objective analysis on the selection of influencing factors by predecessors,this paper uses analytic hierarchy processes(AHP)and one-way ANOVA analysis to scientifically select the factor of time characteristics,which classifies and gives weight to the hourly passenger flow through Duncan test.Then,combining the time weight,BILSTM based model considering the hourly travel characteristics factors is proposed.The model performance is verified through the inbound passenger flow of Ningbo rail transit.The proposed model is compared with many current mainstream deep learning algorithms,the effectiveness of the BILSTM model considering influencing factors is validated.Through comparison and analysis with various evaluation indicators and other deep learning models,the results show that the R2 score of the BILSTM model considering influencing factors reaches 0.968,and the MAE value of the BILSTM model without adding influencing factors decreases by 45.61%. 展开更多
关键词 Rail transit passenger flow predict Time travel characteristics BILSTM Influence factor Deep learning model
下载PDF
Metro passenger flow control with station-to-station cooperation based on stop-skipping and boarding limiting 被引量:11
6
作者 姜曼 李海鹰 +2 位作者 许心越 徐仕鹏 苗建瑞 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期236-244,共9页
Metro passenger flow control problem is studied under given total inbound demand in this work,which considers passenger demand control and train capacity supply.Relevant connotations are analyzed and a mathematical mo... Metro passenger flow control problem is studied under given total inbound demand in this work,which considers passenger demand control and train capacity supply.Relevant connotations are analyzed and a mathematical model is developed.The decision variables are boarding limiting and stop-skipping strategies and the objective is the maximal passenger profit.And a passenger original station choice model based on utility theory is built to modify the inbound passenger distribution among stations.Algorithm of metro passenger flow control scheme is designed,where two key technologies of stopping-station choice and headway adjustment are given and boarding limiting and train stopping-station scheme are optimized.Finally,a real case of Beijing metro is taken for example to verify validity.The results show that in the three scenarios with different ratios of normal trains to stop-skipping trains,the total limited passenger volume is the smallest and the systematic profit is the largest in scenario 3. 展开更多
关键词 METRO passenger flow control stop-skipping boarding limiting passenger original station choice
下载PDF
Spatial Interaction and Network Structure Evolvement of Cities in Terms of China's Rail Passenger Flows 被引量:11
7
作者 DAI Teqi JIN Fengjun 《Chinese Geographical Science》 SCIE CSCD 2008年第3期206-213,共8页
Cities separated in space are connected together by spatial interaction (SI) between them. But the studies focusing on the SI are relatively few in China mainly because of the scarcity of data. This paper deals with t... Cities separated in space are connected together by spatial interaction (SI) between them. But the studies focusing on the SI are relatively few in China mainly because of the scarcity of data. This paper deals with the SI in terms of rail passenger flows, which is an important aspect of the network structure of urban agglomeration. By using a data set consisting of rail O-D (origin-destination) passenger flows among nearly 200 cities, intercity rail distance O-D matrixes, and some other indices, it is found that the attenuating tendency of rail passenger is obvious. And by the analysis on dominant flows and spatial structure of flows, we find that passenger flows have a trend of polarizing to hubs while the linkages between hubs upgrade. However, the gravity model reveals an overall picture of convergence process over time which is not in our expectation of integration process in the framework of globalization and economic integration. Some driven factors for the re-organization process of the structure of urban agglomeration, such as technique advance, globalization, etc. are discussed further based on the results we obtained. 展开更多
关键词 rail passenger flows urban agglomerations spatial interaction gravity model distance decay
下载PDF
A Distributionally Robust Optimization Method for Passenger Flow Control Strategy and Train Scheduling on an Urban Rail Transit Line 被引量:4
8
作者 Yahan Lu Lixing Yang +4 位作者 Kai Yang Ziyou Gao Housheng Zhou Fanting Meng Jianguo Qi 《Engineering》 SCIE EI CAS 2022年第5期202-220,共19页
Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestio... Regular coronavirus disease 2019(COVID-19)epidemic prevention and control have raised new require-ments that necessitate operation-strategy innovation in urban rail transit.To alleviate increasingly seri-ous congestion and further reduce the risk of cross-infection,a novel two-stage distributionally robust optimization(DRO)model is explicitly constructed,in which the probability distribution of stochastic scenarios is only partially known in advance.In the proposed model,the mean-conditional value-at-risk(CVaR)criterion is employed to obtain a tradeoff between the expected number of waiting passen-gers and the risk of congestion on an urban rail transit line.The relationship between the proposed DRO model and the traditional two-stage stochastic programming(SP)model is also depicted.Furthermore,to overcome the obstacle of model solvability resulting from imprecise probability distributions,a discrepancy-based ambiguity set is used to transform the robust counterpart into its computationally tractable form.A hybrid algorithm that combines a local search algorithm with a mixed-integer linear programming(MILP)solver is developed to improve the computational efficiency of large-scale instances.Finally,a series of numerical examples with real-world operation data are executed to validate the pro-posed approaches. 展开更多
关键词 passenger flow control Train scheduling Distributionally robust optimization Stochastic and dynamic passenger demand Ambiguity set
下载PDF
Research on Railway Passenger Flow Prediction Method Based on GA Improved BP Neural Network 被引量:5
9
作者 Jian Zhang Weihao Guo 《Journal of Computer and Communications》 2019年第7期283-292,共10页
This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its... This paper chooses passenger flow data of some stations in China from January 2015 to March 2016, and the time series prediction model of BP neural network for railway passenger flow is established. But because of its slow convergence speed and easily falling into local optimal solution of the problem, we propose to improve the time series model of BP neural network by genetic algorithm to predict railway passenger flow. Experimental results show that the improved method has higher prediction accuracy and better nonlinear fitting ability. 展开更多
关键词 RAILWAY passenger flow Prediction BP NEURAL Network GENETIC Algorithm
下载PDF
Exploring the Evolution of Passenger Flow and Travel Time Reliability with the Expanding Process of Metro System Using Smartcard Data 被引量:1
10
作者 Xinwei Ma Yanjie Ji +1 位作者 Yao Fan Chenyu Yi 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2019年第1期17-29,共13页
Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to ana... Metro system has experienced the global rapid rise over the past decades. However,few studies have paid attention to the evolution in system usage with the network expanding. The paper's main objectives are to analyze passenger flow characteristics and evaluate travel time reliability for the Nanjing Metro network by visualizing the smart card data of April 2014,April 2015 and April 2016. We performed visualization techniques and comparative analyses to examine the changes in system usage between before and after the system expansion. Specifically,workdays,holidays and weekends were specially segmented for analysis.Results showed that workdays had obvious morning and evening peak hours due to daily commuting,while no obvious peak hours existed in weekends and holidays and the daily traffic was evenly distributed. Besides,some metro stations had a serious directional imbalance,especially during the morning and evening peak hours of workdays. Serious unreliability occurred in morning peaks on workdays and the reliability of new lines was relatively low,meanwhile,new stations had negative effects on exiting stations in terms of reliability. Monitoring the evolution of system usage over years enables the identification of system performance and can serve as an input for improving the metro system quality. 展开更多
关键词 METRO expansion smart CARD DATA passenger flow characteristics TRAVEL time reliability visualization
下载PDF
Identification method of crowded passenger flow based on automatic fare collection data of Nanjing Metro 被引量:2
11
作者 Lu Jia Ren Gang Xu Linghui 《Journal of Southeast University(English Edition)》 EI CAS 2019年第2期236-241,共6页
To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyze... To relieve traffic congestion in urban rail transit stations,a new identification method of crowded passenger flow based on automatic fare collection data is proposed.First,passenger travel characteristics are analyzed by observing the temporal distribution of inflow passengers each hour and the spatial distribution concerning cross-section passenger flow.Secondly,the identification method of crowded passenger flow is proposed to calculate the threshold via the probability density function fitted by Matlab and classify the early-warning situation based on the threshold obtained.Finally,a case study of Xinjiekou station is conducted to prove the validity and practicability of the proposed method.Compared to the traditional methods,the proposed comprehensive method can remove defects such as efficiency and delay.Furthermore,the proposed method is suitable for other rail transit companies equipped with automatic fare collection systems. 展开更多
关键词 travel characteristic identification method crowded passenger flow automatic fare collection
下载PDF
Optimization Scheme of Large Passenger Flow in Huoying Station,Line 13 of Beijing Subway System 被引量:2
12
作者 Jin Zhou Haochen Wang +3 位作者 Di Sun Siqiang Xu Meng Lv Feifei Yu 《Computers, Materials & Continua》 SCIE EI 2020年第6期1387-1398,共12页
This paper focuses on the distribution of passenger flow in Huoying Station,Line 13 of Beijing subway system.The transformation measures taken by Line 13 since operation are firstly summarized.Then the authors elabora... This paper focuses on the distribution of passenger flow in Huoying Station,Line 13 of Beijing subway system.The transformation measures taken by Line 13 since operation are firstly summarized.Then the authors elaborate the facilities and equipment of this station,especially the node layout and passenger flow field.An optimization scheme is proposed to rapidly distribute the passenger flow in Huoying Station by adjusting the operation time of the escalator in the direction of Xizhimen.The authors adopt Queuing theory and Anylogic simulation software to simulate the original and the optimized schemes of Huoying Station to distribute the passenger flow.The results of the simulation indicate that the optimized scheme could effectively alleviate the traffic congestion in the hall of Huoying Station,and the pedestrian density in other places of the hall is lowered;passengers could move freely in the hall and no new congestion points would form.The rationality of the scheme is thus proved. 展开更多
关键词 Huoying station of Beijing subway system passenger flow ESCALATOR queuing theory system simulation ANYLOGIC
下载PDF
Probabilistic interval prediction of metro-to-bus transfer passenger flow in the trip chain 被引量:2
13
作者 Shen Jin Zhao Jiandong +2 位作者 Gao Yuan Feng Yingzi Jia Bin 《Journal of Southeast University(English Edition)》 EI CAS 2022年第4期408-417,共10页
To accurately analyze the fluctuation range of time-varying differences in metro-to-bus transfer passenger flows,the application of a probabilistic interval prediction model is proposed to predict transfer passenger f... To accurately analyze the fluctuation range of time-varying differences in metro-to-bus transfer passenger flows,the application of a probabilistic interval prediction model is proposed to predict transfer passenger flows.First,bus and metro data are processed and matched by association to construct the basis for public transport trip chain extraction.Second,a reasonable matching threshold method to discriminate the transfer relationship is used to extract the public transport trip chain,and the basic characteristics of the trip based on the trip chain are analyzed to obtain the metro-to-bus transfer passenger flow.Third,to address the problem of low accuracy of point prediction,the DeepAR model is proposed to conduct interval prediction,where the input is the interchange passenger flow,the output is the predicted median and interval of passenger flow,and the prediction scenarios are weekday,non-workday,and weekday morning and evening peaks.Fourth,to reduce the prediction error,a combined particle swarm optimization(PSO)-DeepAR model is constructed using the PSO to optimize the DeepAR model.Finally,data from the Beijing Xizhimen subway station are used for validation,and results show that the PSO-DeepAR model has high prediction accuracy,with a 90%confidence interval coverage of up to 93.6%. 展开更多
关键词 urban traffic probabilistic interval prediction deep learning metro-to-bus transfer passenger flow trip chain
下载PDF
Combination forecast for urban rail transit passenger flow based on fuzzy information granulation and CPSO-LS-SVM 被引量:3
14
作者 TANG Min-an ZHANG Kai LIU Xing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2018年第1期32-41,共10页
In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fu... In order to obtain the trend of urban rail transit traffic flow and grasp the fluctuation range of passenger flow better,this paper proposes a combined forecasting model of passenger flow fluctuation range based on fuzzy information granulation and least squares support vector machine(LS-SVM)optimized by chaos particle swarm optimization(CPSO).Due to the nonlinearity and fluctuation of the passenger flow,firstly,fuzzy information granulation is used to extract the valid data from the window according to the requirement.Secondly,CPSO that has strong global search ability is applied to optimize the parameters of the LS-SVM forecasting model.Finally,the combined model is used to forecast the fluctuation range of early peak passenger flow at Tiyu Xilu Station of Guangzhou Metro Line 3 in 2014,and the results are compared and analyzed with other models.Simulation results demonstrate that the combined forecasting model can effectively track the fluctuation of passenger flow,which provides an effective method for predicting the fluctuation range of short-term passenger flow in the future. 展开更多
关键词 urban rail transit passenger flow forecast least squares support vector machine(LS-SVM) fuzzy information granulation chaos particle swarm optimization(CPSO)
下载PDF
The Research of Urban Rail Transit Sectional Passenger Flow Prediction Method 被引量:1
15
作者 Qian Li Yong Qin +4 位作者 Ziyang Wang Zhongxin Zhao Minghui Zhan Yu Liu Zhiguo Li 《Journal of Intelligent Learning Systems and Applications》 2013年第4期227-231,共5页
This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three ... This paper studies the short-term prediction methods of sectional passenger flow, and selects BP neural network combined with the characteristics of sectional passenger flow itself. With a case study, we design three different schemes. We use Matlab to realize the prediction of the sectional passenger flow of the Beijing subway Line 2 and make comparative analysis. The empirical research shows that combining data characteristics of sectional passenger flow with the BP neural network have good prediction accuracy. 展开更多
关键词 URBAN RAIL TRANSIT NEURAL Network Sectional passenger flow Prediction Method
下载PDF
Medium-term forecast of daily passenger volume of high speed railway based on DLP-WNNMedium-term forecast of dailypassenger volume of high speedrailway based on DLP-WNN
16
作者 Tangjian Wei Xingqi Yang +1 位作者 Guangming Xu Feng Shi 《Railway Sciences》 2023年第1期121-139,共19页
Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutiv... Purpose – This paper aims to propose a medium-term forecast model for the daily passenger volume of HighSpeed Railway (HSR) systems to predict the daily the Origin-Destination (OD) daily volume formultiple consecutivedays (e.g. 120 days).Design/methodology/approach – By analyzing the characteristics of the historical data on daily passengervolume of HSR systems, the date and holiday labels were designed with determined value ranges.In accordance to the autoregressive characteristics of the daily passenger volume of HSR, the Double LayerParallel Wavelet Neural Network (DLP-WNN) model suitable for the medium-term (about 120 d) forecast of thedaily passenger volume of HSR was established. The DLP-WNN model obtains the daily forecast result byweighed summation of the daily output values of the two subnets. Subnet 1 reflects the overall trend of dailypassenger volumes in the recent period, and subnet 2 the daily fluctuation of the daily passenger volume toensure the accuracy of medium-term forecast.Findings – According to the example application, in which the DLP-WNN modelwas used for the medium-termforecast of the daily passenger volumes for 120 days for typical O-D pairs at 4 different distances, the averageabsolute percentage error is 7%-12%, obviously lower than the results measured by the Back Propagation (BP)neural network, the ELM (extreme learning machine), the ELMAN neural network, the GRNN (generalizedregression neural network) and the VMD-GA-BP. The DLP-WNN model was verified to be suitable for themedium-term forecast of the daily passenger volume of HSR.Originality/value – This study proposed a Double Layer Parallel structure forecast model for medium-termdaily passenger volume (about 120 days) of HSR systems by using the date and holiday labels and WaveletNeural Network. The predict results are important input data for supporting the line planning, scheduling andother decisions in operation and management in HSR systems. 展开更多
关键词 High speed railway passenger flow forecast Daily passenger volume Medium-term forecast Wavelet neural network
下载PDF
Prediction of Passenger Flow at Sanya Airport Based on Combined Methods 被引量:1
17
作者 Xia Liu Xia Huang +2 位作者 Lei Chen Zhao Qiu Ming-rui Chen 《国际计算机前沿大会会议论文集》 2017年第1期180-181,共2页
It is crucial to correctly predict the passenger flow of an air route for the construction and development of an airport.Based on the passenger flow data of Sanya Airport from 2008 to 2016,this paper respectively adop... It is crucial to correctly predict the passenger flow of an air route for the construction and development of an airport.Based on the passenger flow data of Sanya Airport from 2008 to 2016,this paper respectively adopted Holt-Winter Seasonal Model,ARMA and linear regression model to predict the passenger flow of Sanya Airport from 2017 to 2018.In order to reduce the prediction error and improve the prediction accuracy at meanwhile,the combinatorial weighted method is adopted to predict the data in a combined manner.Upon verification,this method has been proved to be an effective approach to predict the airport passenger flow. 展开更多
关键词 AIRPORT passenger flow PREDICTION SEASONAL MODEL Regression soothing MODEL Linear regression COMBINATION
下载PDF
Analysis on Passenger Flow Characteristics of Subway Station Pedestrian Facilities
18
作者 DONG Shunhui HU Hua 《International English Education Research》 2017年第3期20-22,共3页
It is possible to improve the service level of the new subway station by analysing the passenger flow characteristics and optimizing the design of the pedestrian facilities of a station. In this paper, through the inv... It is possible to improve the service level of the new subway station by analysing the passenger flow characteristics and optimizing the design of the pedestrian facilities of a station. In this paper, through the investigation of passenger flow status of different types of subway station on different sections, and analysis of the passenger flow characteristics of pedestrian facilities, such as station channels, stairs and escalators, some suggestions of pedestrian facilities parameters of the station design are put forward. 展开更多
关键词 Rail transit subway station pedestrian facilities passenger flow characteristics
下载PDF
Passenger Flow Status Evaluation in Subway Station Based on Probabilistic Neural Network
19
作者 SUN Jianhui HU Hua LIU Zhigang 《International English Education Research》 2018年第3期34-37,共4页
This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passi... This paper select the escalator with large flow in the station as the object, analysing the correlation of the AFC data of the in and out gates and the passenger flow parameters by passenger flow density and the passing time acquired and calculated in the waiting area of the prediction escalator to select the gates related to the predicted the escalator. NARX neural network is used to predict the model of the passenger flow parameters of the escalator waiting area based on the related gates' AFC data, then a probabilistic neural network model was established by using the AFC data and predicted passenger flow parameters as input and the passenger flow status in the escalator waiting area of subway station as output.The result shows the predicting model can predict the passenger flow status of the escalator waiting area better by the AFC data in the subway station. Research result can provide decision basis for the operation management of the subway station. 展开更多
关键词 Subway station Escalator waiting area AFC data Probabilistic neural network passenger flow status
下载PDF
Passenger Flow Forecast of Sanya Airport Based on ARIMA Model
20
作者 Yuan-hui Li Hai-yun Han +1 位作者 Xia Liu Chao Li 《国际计算机前沿大会会议论文集》 2018年第2期36-36,共1页
关键词 passenger flow ARIMA MODEL PREDICTION
下载PDF
上一页 1 2 128 下一页 到第
使用帮助 返回顶部