The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China ...The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.展开更多
Three methods of extracting the information of anomalies of a precursory group are put forward, i.e., the mathematical analyses of the synthetic information of earthquake precursors (S), the inhomogeneous degree of pr...Three methods of extracting the information of anomalies of a precursory group are put forward, i.e., the mathematical analyses of the synthetic information of earthquake precursors (S), the inhomogeneous degree of precursory groups (ID) and the values of short-term and impending anomaly in near-source area (NS). Using these methods, we calculate the observational data of deformation, underground fluid and hydrochemical constituents obtained from different seismic stations in the Sichuan-Yunnan region and conclude that the synthetic precursory anomalies of a single strong earthquake with M S6.0 differ greatly from those of the grouped strong earthquakes, for the anomalous information of precursory groups are more abundant. The three methods of extracting the synthetic precursory anomaly and the related numerical results can be applied into the practice of prediction to the grouped strong earthquakes in the Sichuan-Yunnan region. Inhomogeneous degree (ID) of synthetic precursory anomaly can be identified automatically because it takes the threshold of distributive characteristics of the anomalies of precursory group as its criterion for anomaly.展开更多
Based on the extraction and calculation of the short-term seismic precursory information magnitude from the 114 major precursory observations in the North China region, and together with consideration of factors such ...Based on the extraction and calculation of the short-term seismic precursory information magnitude from the 114 major precursory observations in the North China region, and together with consideration of factors such as geological structure, seismicity, crustal thickness, and in particular, the current geodynamics of the region, the authors studied the time-space evolution characteristics of the short-term earthquake precursory information magnitude and its relationship with earthquakes and proposed the index and method for the short-term synthetic prediction of earthquakes with M S≥5.0 in the North China region. The inspection through R-value shows that the method is effective to a certain extent for earthquake prediction.展开更多
Ionosphereic foF2 variations are very sensitive to the seismic effect and results of ionospheric perturbations associated with earthquakes seem to very hopeful for short-term earthquake prediction. On January 18,2011 ...Ionosphereic foF2 variations are very sensitive to the seismic effect and results of ionospheric perturbations associated with earthquakes seem to very hopeful for short-term earthquake prediction. On January 18,2011 at 20: 23 UT a great earthquake( M = 7. 2)occurred in Dalbandin( 28. 73° N,63. 92° E),Pakistan. In this study,we have tried to find out the features of pre-earthquake ionospheric anomalies by using the hourly day time( 08. 00 a. m.- 05. 00 p. m.) data of critical frequency( foF2) obtained by three vertical sounding stations installed in Islamabad( 33. 78°N,73. 06°E),Multan( 32. 26°N,71. 51°E) and Karachi( 24. 89° N,67. 02° E), Pakistan. The results show the significant anomalies of foF2 in the earthquake preparation zone several days prior to the Dalbandin earthquake. It is also observed that the amplitude and frequency of foF2 anomalies are more prominent at the nearest station to the epicenter as compared to those stations near the outer margin of the earthquake preparation zone. The confidence level for ionospheric anomalies regarding the seismic signatures can be enhanced by adding the analysis of some other ionospheic parameters along with critical frequency of the layer F2.展开更多
基金supported by National Key Technologies Research&Development Program of China (Grant No. 2008BAC35B00).
文摘The diurnal variation of the geomagnetic vertical component is exhibited mainly by changes of phase and amplitude before strong earthquakes. Based on data recorded by the network of geomagnetic observatories in China for many years, the anomalous features of the appearance time of the minima of diurnal variations (i.e, low-point time) of the geo- magnetic vertical components and the variation of their spatial distribution (i.e, phenomena of low-point displacement) have been studied before the Wenchuan Ms8.0 earthquake. The strong aftershocks after two months' quiescence of M6 aftershocks of the Ms8.0 event were forecasted based on these studies. There are good correlativities between these geomagnetic anoma- lies and occurrences of earthquakes. It has been found that most earthquakes occur near the boundary line of sudden changes of the low-point time and generally within four days before or after the 27th or 41st day counting from the day of the appearance of the anomaly. In addition, the imminent anomalies in diurnal-variation amplitudes near the epicentral areas have also been studied before the Wenchuan earthquake.
文摘Three methods of extracting the information of anomalies of a precursory group are put forward, i.e., the mathematical analyses of the synthetic information of earthquake precursors (S), the inhomogeneous degree of precursory groups (ID) and the values of short-term and impending anomaly in near-source area (NS). Using these methods, we calculate the observational data of deformation, underground fluid and hydrochemical constituents obtained from different seismic stations in the Sichuan-Yunnan region and conclude that the synthetic precursory anomalies of a single strong earthquake with M S6.0 differ greatly from those of the grouped strong earthquakes, for the anomalous information of precursory groups are more abundant. The three methods of extracting the synthetic precursory anomaly and the related numerical results can be applied into the practice of prediction to the grouped strong earthquakes in the Sichuan-Yunnan region. Inhomogeneous degree (ID) of synthetic precursory anomaly can be identified automatically because it takes the threshold of distributive characteristics of the anomalies of precursory group as its criterion for anomaly.
文摘Based on the extraction and calculation of the short-term seismic precursory information magnitude from the 114 major precursory observations in the North China region, and together with consideration of factors such as geological structure, seismicity, crustal thickness, and in particular, the current geodynamics of the region, the authors studied the time-space evolution characteristics of the short-term earthquake precursory information magnitude and its relationship with earthquakes and proposed the index and method for the short-term synthetic prediction of earthquakes with M S≥5.0 in the North China region. The inspection through R-value shows that the method is effective to a certain extent for earthquake prediction.
基金partly supported by the Natural Science Foundation of China,Contract No. 41274061
文摘Ionosphereic foF2 variations are very sensitive to the seismic effect and results of ionospheric perturbations associated with earthquakes seem to very hopeful for short-term earthquake prediction. On January 18,2011 at 20: 23 UT a great earthquake( M = 7. 2)occurred in Dalbandin( 28. 73° N,63. 92° E),Pakistan. In this study,we have tried to find out the features of pre-earthquake ionospheric anomalies by using the hourly day time( 08. 00 a. m.- 05. 00 p. m.) data of critical frequency( foF2) obtained by three vertical sounding stations installed in Islamabad( 33. 78°N,73. 06°E),Multan( 32. 26°N,71. 51°E) and Karachi( 24. 89° N,67. 02° E), Pakistan. The results show the significant anomalies of foF2 in the earthquake preparation zone several days prior to the Dalbandin earthquake. It is also observed that the amplitude and frequency of foF2 anomalies are more prominent at the nearest station to the epicenter as compared to those stations near the outer margin of the earthquake preparation zone. The confidence level for ionospheric anomalies regarding the seismic signatures can be enhanced by adding the analysis of some other ionospheic parameters along with critical frequency of the layer F2.