期刊文献+
共找到664篇文章
< 1 2 34 >
每页显示 20 50 100
Understanding how heterogeneous agents affect Principal's returns:Perspectives from short-termism and Bayesian learning
1
作者 Chuan Ding Yang Li Zhenyu Cui 《Journal of Management Science and Engineering》 CSCD 2023年第3期342-368,共27页
We consider a general framework of optimal contract design under the heterogeneity and short-termism of agents.Our research shows that the optimal contract must weigh the agent's information rent,incentive cost,an... We consider a general framework of optimal contract design under the heterogeneity and short-termism of agents.Our research shows that the optimal contract must weigh the agent's information rent,incentive cost,and benefit to overcome the contract's adverse selection and moral hazards.Agents with higher moral levels were more likely to choose higher effort and lower manipulation.Simultaneously,the principal offers lower incentives and receives more significant payoff.We also extend our model to investigate the benefits of Bayesian learning.Furthermore,we compare the principal's returns in general and learning models and find that the learning contract can bring more profit to the principal。 展开更多
关键词 short-termism Bayesian learning Agent heterogeneity Principal-agent model
原文传递
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:1
2
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 Stochastic model LS+AR short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
Modeling injection-induced fault slip using long short-term memory networks
3
作者 Utkarsh Mital Mengsu Hu +2 位作者 Yves Guglielmi James Brown Jonny Rutqvist 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4354-4368,共15页
Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an... Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections. 展开更多
关键词 Machine learning Long short-term memory networks FAULT Fluid injection
下载PDF
A Time Series Short-Term Prediction Method Based on Multi-Granularity Event Matching and Alignment
4
作者 Haibo Li Yongbo Yu +1 位作者 Zhenbo Zhao Xiaokang Tang 《Computers, Materials & Continua》 SCIE EI 2024年第1期653-676,共24页
Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same g... Accurate forecasting of time series is crucial across various domains.Many prediction tasks rely on effectively segmenting,matching,and time series data alignment.For instance,regardless of time series with the same granularity,segmenting them into different granularity events can effectively mitigate the impact of varying time scales on prediction accuracy.However,these events of varying granularity frequently intersect with each other,which may possess unequal durations.Even minor differences can result in significant errors when matching time series with future trends.Besides,directly using matched events but unaligned events as state vectors in machine learning-based prediction models can lead to insufficient prediction accuracy.Therefore,this paper proposes a short-term forecasting method for time series based on a multi-granularity event,MGE-SP(multi-granularity event-based short-termprediction).First,amethodological framework for MGE-SP established guides the implementation steps.The framework consists of three key steps,including multi-granularity event matching based on the LTF(latest time first)strategy,multi-granularity event alignment using a piecewise aggregate approximation based on the compression ratio,and a short-term prediction model based on XGBoost.The data from a nationwide online car-hailing service in China ensures the method’s reliability.The average RMSE(root mean square error)and MAE(mean absolute error)of the proposed method are 3.204 and 2.360,lower than the respective values of 4.056 and 3.101 obtained using theARIMA(autoregressive integratedmoving average)method,as well as the values of 4.278 and 2.994 obtained using k-means-SVR(support vector regression)method.The other experiment is conducted on stock data froma public data set.The proposed method achieved an average RMSE and MAE of 0.836 and 0.696,lower than the respective values of 1.019 and 0.844 obtained using the ARIMA method,as well as the values of 1.350 and 1.172 obtained using the k-means-SVR method. 展开更多
关键词 Time series short-term prediction multi-granularity event ALIGNMENT event matching
下载PDF
Physics Guided Deep Learning-Based Model for Short-Term Origin–Destination Demand Prediction in Urban Rail Transit Systems Under Pandemic
5
作者 Shuxin Zhang Jinlei Zhang +3 位作者 Lixing Yang Feng Chen Shukai Li Ziyou Gao 《Engineering》 SCIE EI CAS CSCD 2024年第10期276-296,共21页
Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,incl... Accurate origin–destination(OD)demand prediction is crucial for the efficient operation and management of urban rail transit(URT)systems,particularly during a pandemic.However,this task faces several limitations,including real-time availability,sparsity,and high-dimensionality issues,and the impact of the pandemic.Consequently,this study proposes a unified framework called the physics-guided adaptive graph spatial–temporal attention network(PAG-STAN)for metro OD demand prediction under pandemic conditions.Specifically,PAG-STAN introduces a real-time OD estimation module to estimate real-time complete OD demand matrices.Subsequently,a novel dynamic OD demand matrix compression module is proposed to generate dense real-time OD demand matrices.Thereafter,PAG-STAN leverages various heterogeneous data to learn the evolutionary trend of future OD ridership during the pandemic.Finally,a masked physics-guided loss function(MPG-loss function)incorporates the physical quantity information between the OD demand and inbound flow into the loss function to enhance model interpretability.PAG-STAN demonstrated favorable performance on two real-world metro OD demand datasets under the pandemic and conventional scenarios,highlighting its robustness and sensitivity for metro OD demand prediction.A series of ablation studies were conducted to verify the indispensability of each module in PAG-STAN. 展开更多
关键词 short-term origin-destination demand prediction Urban rail transit PANDEMIC Physics-guided deep learning
下载PDF
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
6
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction Graph convolutional network Long short-term memory network
下载PDF
An Enhanced Ensemble-Based Long Short-Term Memory Approach for Traffic Volume Prediction
7
作者 Duy Quang Tran Huy Q.Tran Minh Van Nguyen 《Computers, Materials & Continua》 SCIE EI 2024年第3期3585-3602,共18页
With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning ... With the advancement of artificial intelligence,traffic forecasting is gaining more and more interest in optimizing route planning and enhancing service quality.Traffic volume is an influential parameter for planning and operating traffic structures.This study proposed an improved ensemble-based deep learning method to solve traffic volume prediction problems.A set of optimal hyperparameters is also applied for the suggested approach to improve the performance of the learning process.The fusion of these methodologies aims to harness ensemble empirical mode decomposition’s capacity to discern complex traffic patterns and long short-term memory’s proficiency in learning temporal relationships.Firstly,a dataset for automatic vehicle identification is obtained and utilized in the preprocessing stage of the ensemble empirical mode decomposition model.The second aspect involves predicting traffic volume using the long short-term memory algorithm.Next,the study employs a trial-and-error approach to select a set of optimal hyperparameters,including the lookback window,the number of neurons in the hidden layers,and the gradient descent optimization.Finally,the fusion of the obtained results leads to a final traffic volume prediction.The experimental results show that the proposed method outperforms other benchmarks regarding various evaluation measures,including mean absolute error,root mean squared error,mean absolute percentage error,and R-squared.The achieved R-squared value reaches an impressive 98%,while the other evaluation indices surpass the competing.These findings highlight the accuracy of traffic pattern prediction.Consequently,this offers promising prospects for enhancing transportation management systems and urban infrastructure planning. 展开更多
关键词 Ensemble empirical mode decomposition traffic volume prediction long short-term memory optimal hyperparameters deep learning
下载PDF
Integrating Transformer and Bidirectional Long Short-Term Memory for Intelligent Breast Cancer Detection from Histopathology Biopsy Images
8
作者 Prasanalakshmi Balaji Omar Alqahtani +2 位作者 Sangita Babu Mousmi Ajay Chaurasia Shanmugapriya Prakasam 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期443-458,共16页
Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enh... Breast cancer is a significant threat to the global population,affecting not only women but also a threat to the entire population.With recent advancements in digital pathology,Eosin and hematoxylin images provide enhanced clarity in examiningmicroscopic features of breast tissues based on their staining properties.Early cancer detection facilitates the quickening of the therapeutic process,thereby increasing survival rates.The analysis made by medical professionals,especially pathologists,is time-consuming and challenging,and there arises a need for automated breast cancer detection systems.The upcoming artificial intelligence platforms,especially deep learning models,play an important role in image diagnosis and prediction.Initially,the histopathology biopsy images are taken from standard data sources.Further,the gathered images are given as input to the Multi-Scale Dilated Vision Transformer,where the essential features are acquired.Subsequently,the features are subjected to the Bidirectional Long Short-Term Memory(Bi-LSTM)for classifying the breast cancer disorder.The efficacy of the model is evaluated using divergent metrics.When compared with other methods,the proposed work reveals that it offers impressive results for detection. 展开更多
关键词 Bidirectional long short-term memory breast cancer detection feature extraction histopathology biopsy images multi-scale dilated vision transformer
下载PDF
Predictive value of red blood cell distribution width and hematocrit for short-term outcomes and prognosis in colorectal cancer patients undergoing radical surgery
9
作者 Dong Peng Zi-Wei Li +2 位作者 Fei Liu Xu-Rui Liu Chun-Yi Wang 《World Journal of Gastroenterology》 SCIE CAS 2024年第12期1714-1726,共13页
BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has... BACKGROUND Previous studies have reported that low hematocrit levels indicate poor survival in patients with ovarian cancer and cervical cancer,the prognostic value of hematocrit for colorectal cancer(CRC)patients has not been determined.The prognostic value of red blood cell distribution width(RDW)for CRC patients was controversial.AIM To investigate the impact of RDW and hematocrit on the short-term outcomes and long-term prognosis of CRC patients who underwent radical surgery.METHODS Patients who were diagnosed with CRC and underwent radical CRC resection between January 2011 and January 2020 at a single clinical center were included.The short-term outcomes,overall survival(OS)and disease-free survival(DFS)were compared among the different groups.Cox analysis was also conducted to identify independent risk factors for OS and DFS.RESULTS There were 4258 CRC patients who underwent radical surgery included in our study.A total of 1573 patients were in the lower RDW group and 2685 patients were in the higher RDW group.There were 2166 and 2092 patients in the higher hematocrit group and lower hematocrit group,respectively.Patients in the higher RDW group had more intraoperative blood loss(P<0.01)and more overall complications(P<0.01)than did those in the lower RDW group.Similarly,patients in the lower hematocrit group had more intraoperative blood loss(P=0.012),longer hospital stay(P=0.016)and overall complications(P<0.01)than did those in the higher hematocrit group.The higher RDW group had a worse OS and DFS than did the lower RDW group for tumor node metastasis(TNM)stage I(OS,P<0.05;DFS,P=0.001)and stage II(OS,P=0.004;DFS,P=0.01)than the lower RDW group;the lower hematocrit group had worse OS and DFS for TNM stage II(OS,P<0.05;DFS,P=0.001)and stage III(OS,P=0.001;DFS,P=0.001)than did the higher hematocrit group.Preoperative hematocrit was an independent risk factor for OS[P=0.017,hazard ratio(HR)=1.256,95%confidence interval(CI):1.041-1.515]and DFS(P=0.035,HR=1.194,95%CI:1.013-1.408).CONCLUSION A higher preoperative RDW and lower hematocrit were associated with more postoperative complications.However,only hematocrit was an independent risk factor for OS and DFS in CRC patients who underwent radical surgery,while RDW was not. 展开更多
关键词 Colorectal cancer Red blood cell distribution width SURVIVAL short-term outcomes
下载PDF
Transformer-based correction scheme for short-term bus load prediction in holidays
10
作者 Tang Ningkai Lu Jixiang +3 位作者 Chen Tianyu Shu Jiao Chang Li Chen Tao 《Journal of Southeast University(English Edition)》 EI CAS 2024年第3期304-312,共9页
To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduc... To tackle the problem of inaccurate short-term bus load prediction,especially during holidays,a Transformer-based scheme with tailored architectural enhancements is proposed.First,the input data are clustered to reduce complexity and capture inherent characteristics more effectively.Gated residual connections are then employed to selectively propagate salient features across layers,while an attention mechanism focuses on identifying prominent patterns in multivariate time-series data.Ultimately,a pre-trained structure is incorporated to reduce computational complexity.Experimental results based on extensive data show that the proposed scheme achieves improved prediction accuracy over comparative algorithms by at least 32.00%consistently across all buses evaluated,and the fitting effect of holiday load curves is outstanding.Meanwhile,the pre-trained structure drastically reduces the training time of the proposed algorithm by more than 65.75%.The proposed scheme can efficiently predict bus load results while enhancing robustness for holiday predictions,making it better adapted to real-world prediction scenarios. 展开更多
关键词 short-term bus load prediction Transformer network holiday load pre-training model load clustering
下载PDF
Research on the IL-Bagging-DHKELM Short-Term Wind Power Prediction Algorithm Based on Error AP Clustering Analysis
11
作者 Jing Gao Mingxuan Ji +1 位作者 Hongjiang Wang Zhongxiao Du 《Computers, Materials & Continua》 SCIE EI 2024年第6期5017-5030,共14页
With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting m... With the continuous advancement of China’s“peak carbon dioxide emissions and Carbon Neutrality”process,the proportion of wind power is increasing.In the current research,aiming at the problem that the forecasting model is outdated due to the continuous updating of wind power data,a short-term wind power forecasting algorithm based on Incremental Learning-Bagging Deep Hybrid Kernel Extreme Learning Machine(IL-Bagging-DHKELM)error affinity propagation cluster analysis is proposed.The algorithm effectively combines deep hybrid kernel extreme learning machine(DHKELM)with incremental learning(IL).Firstly,an initial wind power prediction model is trained using the Bagging-DHKELM model.Secondly,Euclidean morphological distance affinity propagation AP clustering algorithm is used to cluster and analyze the prediction error of wind power obtained from the initial training model.Finally,the correlation between wind power prediction errors and Numerical Weather Prediction(NWP)data is introduced as incremental updates to the initial wind power prediction model.During the incremental learning process,multiple error performance indicators are used to measure the overall model performance,thereby enabling incremental updates of wind power models.Practical examples show the method proposed in this article reduces the root mean square error of the initial model by 1.9 percentage points,indicating that this method can be better adapted to the current scenario of the continuous increase in wind power penetration rate.The accuracy and precision of wind power generation prediction are effectively improved through the method. 展开更多
关键词 short-term wind power prediction deep hybrid kernel extreme learning machine incremental learning error clustering
下载PDF
Short-Term Household Load Forecasting Based on Attention Mechanism and CNN-ICPSO-LSTM
12
作者 Lin Ma Liyong Wang +5 位作者 Shuang Zeng Yutong Zhao Chang Liu Heng Zhang Qiong Wu Hongbo Ren 《Energy Engineering》 EI 2024年第6期1473-1493,共21页
Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a s... Accurate load forecasting forms a crucial foundation for implementing household demand response plans andoptimizing load scheduling. When dealing with short-term load data characterized by substantial fluctuations,a single prediction model is hard to capture temporal features effectively, resulting in diminished predictionaccuracy. In this study, a hybrid deep learning framework that integrates attention mechanism, convolution neuralnetwork (CNN), improved chaotic particle swarm optimization (ICPSO), and long short-term memory (LSTM), isproposed for short-term household load forecasting. Firstly, the CNN model is employed to extract features fromthe original data, enhancing the quality of data features. Subsequently, the moving average method is used for datapreprocessing, followed by the application of the LSTM network to predict the processed data. Moreover, the ICPSOalgorithm is introduced to optimize the parameters of LSTM, aimed at boosting the model’s running speed andaccuracy. Finally, the attention mechanism is employed to optimize the output value of LSTM, effectively addressinginformation loss in LSTM induced by lengthy sequences and further elevating prediction accuracy. According tothe numerical analysis, the accuracy and effectiveness of the proposed hybrid model have been verified. It canexplore data features adeptly, achieving superior prediction accuracy compared to other forecasting methods forthe household load exhibiting significant fluctuations across different seasons. 展开更多
关键词 short-term household load forecasting long short-term memory network attention mechanism hybrid deep learning framework
下载PDF
Seasonal Short-Term Load Forecasting for Power Systems Based onModal Decomposition and Feature-FusionMulti-Algorithm Hybrid Neural NetworkModel
13
作者 Jiachang Liu Zhengwei Huang +2 位作者 Junfeng Xiang Lu Liu Manlin Hu 《Energy Engineering》 EI 2024年第11期3461-3486,共26页
To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination predi... To enhance the refinement of load decomposition in power systems and fully leverage seasonal change information to further improve prediction performance,this paper proposes a seasonal short-termload combination prediction model based on modal decomposition and a feature-fusion multi-algorithm hybrid neural network model.Specifically,the characteristics of load components are analyzed for different seasons,and the corresponding models are established.First,the improved complete ensemble empirical modal decomposition with adaptive noise(ICEEMDAN)method is employed to decompose the system load for all four seasons,and the new sequence is obtained through reconstruction based on the refined composite multiscale fuzzy entropy of each decomposition component.Second,the correlation between different decomposition components and different features is measured through the max-relevance and min-redundancy method to filter out the subset of features with strong correlation and low redundancy.Finally,different components of the load in different seasons are predicted separately using a bidirectional long-short-term memory network model based on a Bayesian optimization algorithm,with a prediction resolution of 15 min,and the predicted values are accumulated to obtain the final results.According to the experimental findings,the proposed method can successfully balance prediction accuracy and prediction time while offering a higher level of prediction accuracy than the current prediction methods.The results demonstrate that the proposedmethod can effectively address the load power variation induced by seasonal differences in different regions. 展开更多
关键词 short-term load forecasting seasonal characteristics refined composite multiscale fuzzy entropy(RCMFE) max-relevance and min-redundancy(mRMR) bidirectional long short-term memory(BiLSTM) hyperparameter search
下载PDF
Short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function
14
作者 Li-Jun Yao Xiao-Ding Zhu +5 位作者 Liu-Min Zhou Li-Li Zhang Na-Na Liu Min Chen Jia-Ying Wang Shao-Jun Hu 《World Journal of Clinical Cases》 SCIE 2024年第18期3395-3402,共8页
BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patient... BACKGROUND Hepatectomy is the first choice for treating liver cancer.However,inflammatory factors,released in response to pain stimulation,may suppress perioperative immune function and affect the prognosis of patients undergoing hepatectomies.AIM To determine the short-term efficacy of microwave ablation in the treatment of liver cancer and its effect on immune function.METHODS Clinical data from patients with liver cancer admitted to Suzhou Ninth People’s Hospital from January 2020 to December 2023 were retrospectively analyzed.Thirty-five patients underwent laparoscopic hepatectomy for liver cancer(liver cancer resection group)and 35 patients underwent medical image-guided microwave ablation(liver cancer ablation group).The short-term efficacy,complications,liver function,and immune function indices before and after treatment were compared between the two groups.RESULTS One month after treatment,19 patients experienced complete remission(CR),8 patients experienced partial remission(PR),6 patients experienced stable disease(SD),and 2 patients experienced disease progression(PD)in the liver cancer resection group.In the liver cancer ablation group,21 patients experienced CR,9 patients experienced PR,3 patients experienced SD,and 2 patients experienced PD.No significant differences in efficacy and complications were detected between the liver cancer ablation and liver cancer resection groups(P>0.05).After treatment,total bilirubin(41.24±7.35 vs 49.18±8.64μmol/L,P<0.001),alanine aminotransferase(30.85±6.23 vs 42.32±7.56 U/L,P<0.001),CD4+(43.95±5.72 vs 35.27±5.56,P<0.001),CD8+(20.38±3.91 vs 22.75±4.62,P<0.001),and CD4+/CD8+(2.16±0.39 vs 1.55±0.32,P<0.001)were significantly different between the liver cancer ablation and liver cancer resection groups.CONCLUSION The short-term efficacy and safety of microwave ablation and laparoscopic surgery for the treatment of liver cancer are similar,but liver function recovers quickly after microwave ablation,and microwave ablation may enhance immune function. 展开更多
关键词 Microwave ablation Liver cancer short-term efficacy Liver function Immunologic function
下载PDF
Development and validation of a circulating tumor DNA-based optimization-prediction model for short-term postoperative recurrence of endometrial cancer
15
作者 Yuan Liu Xiao-Ning Lu +3 位作者 Hui-Ming Guo Chan Bao Juan Zhang Yu-Ni Jin 《World Journal of Clinical Cases》 SCIE 2024年第18期3385-3394,共10页
BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence r... BACKGROUND Endometrial cancer(EC)is a common gynecological malignancy that typically requires prompt surgical intervention;however,the advantage of surgical management is limited by the high postoperative recurrence rates and adverse outcomes.Previous studies have highlighted the prognostic potential of circulating tumor DNA(ctDNA)monitoring for minimal residual disease in patients with EC.AIM To develop and validate an optimized ctDNA-based model for predicting shortterm postoperative EC recurrence.METHODS We retrospectively analyzed 294 EC patients treated surgically from 2015-2019 to devise a short-term recurrence prediction model,which was validated on 143 EC patients operated between 2020 and 2021.Prognostic factors were identified using univariate Cox,Lasso,and multivariate Cox regressions.A nomogram was created to predict the 1,1.5,and 2-year recurrence-free survival(RFS).Model performance was assessed via receiver operating characteristic(ROC),calibration,and decision curve analyses(DCA),leading to a recurrence risk stratification system.RESULTS Based on the regression analysis and the nomogram created,patients with postoperative ctDNA-negativity,postoperative carcinoembryonic antigen 125(CA125)levels of<19 U/mL,and grade G1 tumors had improved RFS after surgery.The nomogram’s efficacy for recurrence prediction was confirmed through ROC analysis,calibration curves,and DCA methods,highlighting its high accuracy and clinical utility.Furthermore,using the nomogram,the patients were successfully classified into three risk subgroups.CONCLUSION The nomogram accurately predicted RFS after EC surgery at 1,1.5,and 2 years.This model will help clinicians personalize treatments,stratify risks,and enhance clinical outcomes for patients with EC. 展开更多
关键词 Circulating tumor DNA Endometrial cancer short-term recurrence Predictive model Prospective validation
下载PDF
Short-term train arrival delay prediction:a data-driven approach
16
作者 Qingyun Fu Shuxin Ding +3 位作者 Tao Zhang Rongsheng Wang Ping Hu Cunlai Pu 《Railway Sciences》 2024年第4期514-529,共16页
Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and a... Purpose-To optimize train operations,dispatchers currently rely on experience for quick adjustments when delays occur.However,delay predictions often involve imprecise shifts based on known delay times.Real-time and accurate train delay predictions,facilitated by data-driven neural network models,can significantly reduce dispatcher stress and improve adjustment plans.Leveraging current train operation data,these models enable swift and precise predictions,addressing challenges posed by train delays in high-speed rail networks during unforeseen events.Design/methodology/approach-This paper proposes CBLA-net,a neural network architecture for predicting late arrival times.It combines CNN,Bi-LSTM,and attention mechanisms to extract features,handle time series data,and enhance information utilization.Trained on operational data from the Beijing-Tianjin line,it predicts the late arrival time of a target train at the next station using multidimensional input data from the target and preceding trains.Findings-This study evaluates our model’s predictive performance using two data approaches:one considering full data and another focusing only on late arrivals.Results show precise and rapid predictions.Training with full data achieves aMAEof approximately 0.54 minutes and a RMSEof 0.65 minutes,surpassing the model trained solely on delay data(MAE:is about 1.02 min,RMSE:is about 1.52 min).Despite superior overall performance with full data,the model excels at predicting delays exceeding 15 minutes when trained exclusively on late arrivals.For enhanced adaptability to real-world train operations,training with full data is recommended.Originality/value-This paper introduces a novel neural network model,CBLA-net,for predicting train delay times.It innovatively compares and analyzes the model’s performance using both full data and delay data formats.Additionally,the evaluation of the network’s predictive capabilities considers different scenarios,providing a comprehensive demonstration of the model’s predictive performance. 展开更多
关键词 Train delay prediction Intelligent dispatching command Deep learning Convolutional neural network Long short-term memory Attention mechanism
下载PDF
Short-term prediction of photovoltaic power generation based on LMD-EE-ESN with error correction
17
作者 YU Xiangqian LI Zheng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期360-368,共9页
Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorolog... Considering the instability of the output power of photovoltaic(PV)generation system,to improve the power regulation ability of PV power during grid-connected operation,based on the quantitative analysis of meteorological conditions,a short-term prediction method of PV power based on LMD-EE-ESN with iterative error correction was proposed.Firstly,through the fuzzy clustering processing of meteorological conditions,taking the power curves of PV power generation in sunny,rainy or snowy,cloudy,and changeable weather as the reference,the local mean decomposition(LMD)was carried out respectively,and their energy entropy(EE)was taken as the meteorological characteristics.Then,the historical generation power series was decomposed by LMD algorithm,and the hierarchical prediction of the power curve was realized by echo state network(ESN)prediction algorithm combined with meteorological characteristics.Finally,the iterative error theory was applied to the correction of power prediction results.The analysis of the historical data in the PV power generation system shows that this method avoids the influence of meteorological conditions in the short-term prediction of PV output power,and improves the accuracy of power prediction on the condition of hierarchical prediction and iterative error correction. 展开更多
关键词 photovoltaic(PV)power generation system short-term forecast local mean decomposition(LMD) energy entropy(EE) echo state network(ESN)
下载PDF
Analysis of Short-term Heavy Precipitation in Ulanqab City from 2017 to 2022
18
作者 Qiang MA 《Meteorological and Environmental Research》 2024年第5期7-8,共2页
Based on the data of hourly precipitation in 11 national stations and 262 regional stations in Ulanqab City from 2017 to 2022,the annual,monthly and daily variations of short-term heavy precipitation in Ulanqab City w... Based on the data of hourly precipitation in 11 national stations and 262 regional stations in Ulanqab City from 2017 to 2022,the annual,monthly and daily variations of short-term heavy precipitation in Ulanqab City were statistically analyzed.The results show that the frequency of short-term heavy precipitation in Ulanqab City was high in the south and low in the north,and was closely related to the terrain.Short-term heavy precipitation in Ulanqab City was mainly concentrated from June to August,of which it was the frequentest in July.Short-term heavy precipitation mainly occurred from the afternoon to evening,and was concentrated from 13:00 to 20:00,especially at 19:00.The rainfall in Ulanqab City ranged mainly from 20 to 30 mm,accounting for 74.7%,and the rest accounted for 25.3%. 展开更多
关键词 short-term heavy precipitation TERRAIN RAINFALL
下载PDF
Off-Pump Coronary Artery Bypass Grafting in Patients with Left Ventricular Dysfunction: Short-Term Results from a Single Center in Bangladesh
19
作者 Muhit Abdullah Md. Abir Tazim Chowdhury +9 位作者 Satyajit Sharma Rehana Akther Munama Magdum Munjerin Refat Synthee Md. Zafar-Al-Nimari Saikat Das Gupta Saleh Ahmed Samir Kumar Biswas M. Quamrul Islam Talukder Farooque Ahmed 《World Journal of Cardiovascular Surgery》 2024年第9期145-156,共12页
Background: Off-pump coronary artery bypass grafting (OPCAB) is considered a safer alternative to on-pump surgery, especially in patients with left ventricular dysfunction (LVD). Objectives: This study assessed short-... Background: Off-pump coronary artery bypass grafting (OPCAB) is considered a safer alternative to on-pump surgery, especially in patients with left ventricular dysfunction (LVD). Objectives: This study assessed short-term outcomes and functional improvements in LVD patients post-OPCAB. Methods: The study included 200 coronary artery disease patients who underwent isolated off-pump coronary artery bypass grafting (OPCAB) at the National Heart Foundation Hospital and Research Institute between January 2019 and June 2020. Patients were categorized into Group 1, with a left ventricular ejection fraction (LVEF) of 30% - 39%, and Group 2, with an LVEF of 40% or higher. Echocardiographic assessments of left ventricular dimensions and ejection fraction were performed preoperatively, at discharge, and one month postoperatively. Results: In Group 1, preoperative left ventricular internal dimensions during diastole (LVIDd) and systole (LVIDs) were 53.48 ± 4.40 mm and 44.23 ± 3.93 mm, respectively, with a left ventricular ejection fraction (LVEF) of 35.28% ± 2.26%. At discharge, these values improved to 51.58 ± 4.04 mm (LVIDd), 41.23 ± 5.30 mm (LVIDs), and 39.25% ± 3.75% (LVEF). One month postoperatively, further improvements were observed: 46.29 ± 3.76 mm (LVIDd), 37.45 ± 3.68 mm (LVIDs), and 43.22% ± 4.67% (LVEF). Group 2 showed similar positive outcomes, with preoperative values of 47.09 ± 5.06 mm (LVIDd), 35.11 ± 5.25 mm (LVIDs), and 50.13% ± 7.25% (LVEF), improving to 42.37 ± 4.18 mm (LVIDd), 31.05 ± 4.19 mm (LVIDs), and 55.33% ± 7.05% (LVEF) at one month postoperatively. Both groups demonstrated significant improvements in left ventricular function and NYHA class, with most patients moving from class III/IV to I/II. Complications were minimal, and no mortality was observed. Conclusion: OPCAB is safe and effective for patients with LVEF 30% - 39% and LVEF ≥ 40%, providing significant short-term functional improvements without increased risk. 展开更多
关键词 Off-Pump Coronary Artery Bypass Grafting Left Ventricular Dysfunction (LVD) short-term Outcomes
下载PDF
Asphalt pavement short-term rutting analysis and prediction considering temperature and traffic loading conditions 被引量:5
20
作者 黄晓明 杨毅文 +1 位作者 李辉 刘媚 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期385-390,共6页
The rutting simulation method considering temperature variance and traffic time distribution is developed through ABAQUS software. The short-term behavior of pavement rut under the effects of temperature and traffic l... The rutting simulation method considering temperature variance and traffic time distribution is developed through ABAQUS software. The short-term behavior of pavement rut under the effects of temperature and traffic loading is addressed. Then sensitivity analysis on the factors of temperature and traffic loading is conducted and a short-term rutting prediction model is developed. The results show that under the same conditions of temperature and the number of load repetitions, rut increases sharply with the contact pressure in a linear manner, while as for the heavy load situation, the increases likely to be more nonlinear and faster; the significant factors affecting rutting include daily maximum air temperature, daily solar radiation volume, daily minimum air temperature, tire-pavement contact pressure and the number of load repetitions. Finally, a short-term rutting prediction model reflecting the effects of air temperature and traffic loading is developed, and it can be used for prediction and pre-waming for pavement rut prevention. 展开更多
关键词 short-term rutting asphalt pavement ABAQUS
下载PDF
上一页 1 2 34 下一页 到第
使用帮助 返回顶部