The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period fr...The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.展开更多
The Cenozoic magmatic rocks of shoshonitic series in the eastern Qinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these d...The Cenozoic magmatic rocks of shoshonitic series in the eastern Qinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187-0.707 254 for 87Sr/86Sr, 0.512 305-0.512 630 for 143Nd/144Nd, 18.53-18.97 for 206Pb/204Pb, 15.51-15.72 for 207Pb/204Pb and 38.38-39.24 for 208Pb/204Pb. They are isotopically similar to the EMU end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau.展开更多
基金the State Key Basic Research of China(2001CB409803)the National Natural Science Foundation of China(40373017) National 305 Project of Xinjiang(96-915-03-02).
文摘The late Paleozoic adakitic rocks are closely associated with the shoshonitic volcanic rocks in the western Tianshan Mountains, China, both spatially and temporally. The magmatic rocks were formed during the period from the middle to the late Permian with isotopic ages of 248-268 Ma. The 87Sr/86Sr initial ratios of the rocks are low in a narrow variation range (-0.7050). The 143Nd/144Nd initial ratios are high (-0.51240) with positive εND(t) values (+1.28-+4.92). In the εNd(t)-(87Sr/86Sr)i diagram they fall in the first quadrant. The association of the shoshonitic and adakitic rocks can be interpreted by a two-stage model: the shoshonitic volcanic rocks were formed through long-term fractional crystallization of underplated basaltic magma, while the following partial melting of the residual phases formed the adakitic rocks.
基金tional and CAS Tibet Research Project" (G1999043203, G1998040800) and CAS (kz952-S1-414).
文摘The Cenozoic magmatic rocks of shoshonitic series in the eastern Qinghai-Tibet Plateau include potassic alkaline plutonic rocks, volcanic rocks, lamprophyres and acidic porphyries. Analytical results show that these different lithological rocks are extremely similar in Sr, Nd and Pb isotopic compositions with the range of 0.705 187-0.707 254 for 87Sr/86Sr, 0.512 305-0.512 630 for 143Nd/144Nd, 18.53-18.97 for 206Pb/204Pb, 15.51-15.72 for 207Pb/204Pb and 38.38-39.24 for 208Pb/204Pb. They are isotopically similar to the EMU end-member. This indicates that mantle metasomatism must have taken place in their source region. The formation of these particular rocks is related to crustal thinning and mantle upwelling in a large-scale strike-slip and pull-apart fault zone at about 40 Ma in northern and eastern Qinghai-Tibet Plateau.