期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A blind video watermarking scheme based on ICA and shot segmentation 被引量:4
1
作者 SUN Jiande LIU Ju 《Science in China(Series F)》 2006年第3期302-312,共11页
Video watermark is the main method to protect the copyright of digital video. In this paper, a blind video watermarking scheme based on independent component analysis (ICA) and shot segmentation is presented. In thi... Video watermark is the main method to protect the copyright of digital video. In this paper, a blind video watermarking scheme based on independent component analysis (ICA) and shot segmentation is presented. In this scheme, the global histogram comparison approach is used to segment the video, and ICA is performed on each obtained segment to get its independent component frames (ICFs). The copyright information is embedded into the principal independent component frames (PICFs) according to the single watermark embedding (SWE) scheme. The content-based shot segmentation for video sequences is used here to improve the robustness to temporal desynchronization. The watermark embedded in PICFs provides better robustness to intra-video collusion attack. And blind detection is achieved by using the SWE scheme. The simulations show the feasibility and validity of this scheme. It can resist most of the common frame-based and video-based attacks. The watermark can be detected blindly. And it is robust to temporal desynchronization and intra-video collusion. 展开更多
关键词 digital watermark video watermark copyright protection independent component analysis shot segmentation.
原文传递
An Efficient Attention-Based Strategy for Anomaly Detection in Surveillance Video
2
作者 Sareer Ul Amin Yongjun Kim +2 位作者 Irfan Sami Sangoh Park Sanghyun Seo 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期3939-3958,共20页
In the present technological world,surveillance cameras generate an immense amount of video data from various sources,making its scrutiny tough for computer vision specialists.It is difficult to search for anomalous e... In the present technological world,surveillance cameras generate an immense amount of video data from various sources,making its scrutiny tough for computer vision specialists.It is difficult to search for anomalous events manually in thesemassive video records since they happen infrequently and with a low probability in real-world monitoring systems.Therefore,intelligent surveillance is a requirement of the modern day,as it enables the automatic identification of normal and aberrant behavior using artificial intelligence and computer vision technologies.In this article,we introduce an efficient Attention-based deep-learning approach for anomaly detection in surveillance video(ADSV).At the input of the ADSV,a shots boundary detection technique is used to segment prominent frames.Next,The Lightweight ConvolutionNeuralNetwork(LWCNN)model receives the segmented frames to extract spatial and temporal information from the intermediate layer.Following that,spatial and temporal features are learned using Long Short-Term Memory(LSTM)cells and Attention Network from a series of frames for each anomalous activity in a sample.To detect motion and action,the LWCNN received chronologically sorted frames.Finally,the anomaly activity in the video is identified using the proposed trained ADSV model.Extensive experiments are conducted on complex and challenging benchmark datasets.In addition,the experimental results have been compared to state-ofthe-artmethodologies,and a significant improvement is attained,demonstrating the efficiency of our ADSV method. 展开更多
关键词 Attention-based anomaly detection video shots segmentation video surveillance computer vision deep learning smart surveillance system violence detection attention model
下载PDF
Two-dimensional entropy model for video shot partitioning 被引量:1
3
作者 ZHU SongHao LIU YunCai 《Science in China(Series F)》 2009年第2期183-194,共12页
A shot presents a contiguous action recorded by an uninterrupted camera operation and frames within a shot keep spatio-temporal coherence. Segmenting a serial video stream file into meaningful shots is the first pass ... A shot presents a contiguous action recorded by an uninterrupted camera operation and frames within a shot keep spatio-temporal coherence. Segmenting a serial video stream file into meaningful shots is the first pass for the task of video analysis, content-based video understanding. In this paper, a novel scheme based on improved two-dimensional entropy is proposed to complete the partition of video shots. Firstly, shot transition candidates are detected using a two-pass algorithm: a coarse searching pass and a fine searching pass. Secondly, with the character of two-dimensional entropy of the image, correctly detected transition candidates are further classified into different transition types whereas those falsely detected shot breaks are distinguished and removed. Finally, the boundary of gradual transition can be precisely located by merging the characters of two-dimensional entropy of the image into the gradual transition. A large number of video sequences are used to test our system performance and promising results are obtained. 展开更多
关键词 video shot segmentation two-dimensional entropy model coarse-to-fine algorithm content-based indexing and retrieval
原文传递
A comprehensive review of significant researches on content based indexing and retrieval of visual information 被引量:3
4
作者 R. PRIYA T. N. SHANMUGAM 《Frontiers of Computer Science》 SCIE EI CSCD 2013年第5期782-799,共18页
Developments in multimedia technologies have paved way for the storage of huge collections of video doc- uments on computer systems. It is essential to design tools for content-based access to the documents, so as to ... Developments in multimedia technologies have paved way for the storage of huge collections of video doc- uments on computer systems. It is essential to design tools for content-based access to the documents, so as to allow an efficient exploitation of these collections. Content based anal- ysis provides a flexible and powerful way to access video data when compared with the other traditional video analysis tech- niques. The area of content based video indexing and retrieval (CBVIR), focusing on automating the indexing, retrieval and management of video, has attracted extensive research in the last decade. CBVIR is a lively area of research with endur- ing acknowledgments from several domains. Herein a vital assessment of contemporary researches associated with the content-based indexing and retrieval of visual information. In this paper, we present an extensive review of significant researches on CBV1R. Concise description of content based video analysis along with the techniques associated with the content based video indexing and retrieval is presented. 展开更多
关键词 nultimedia information content based video retrieval (CBVR) content based video indexing and retrieval (CBVIR) shot segmentation object segmentation feature extraction INDEXING motion estimation QUERYING key frame RETRIEVAL and indexing.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部