The present research has developed a novel investment casting process for ingot production of TiAl alloys through forming a small vertical temperature gradient on the mold.The advantage of this process is to guarantee...The present research has developed a novel investment casting process for ingot production of TiAl alloys through forming a small vertical temperature gradient on the mold.The advantage of this process is to guarantee that the castings solidify sequentially from bottom to top.The analysis of numerical simulation and experimental results showed that the shrinkage porosity of Ti-47Al-2Cr-2Nb alloy was significantly improved by forming a vertical temperature gradient of 3 oC/mm on the mold,while the increase of pouring temperature and pressure on the molten alloys had no apparent effect on the reduction of shrinkage porosity.The critical value of the Niyama criterion that can reliably predict the shrinkage porosity in Ti-47Al-2Cr-2Nb alloy was identified by the comparison of experimental and simulated results.展开更多
Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens con...Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface(SPAFS) and alternating stress intensity factor(ASIF) were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.展开更多
Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT) with different levels of shrinkage porosity were prepared and then te...Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT) with different levels of shrinkage porosity were prepared and then tensile and fatigue tests were performed to investigate the impact of shrinkage porosity on their mechanical properties. The results showed that the tensile strength decreases linearly with increasing of the shrinkage porosity. The tensile elongation decreases sharply with the increase of the shrinkage porosity mainly due to the non-uniform plastic deformation. The fatigue life also dramatically declines with increasing of the porosity and follows a power law relationship with the area percentage of porosity. The existence of the shrinkage porosity made the fatigue fracture complex. The shrinkage pores, especially those close to the surface usually became the crack initiation sites. For test pieces with less porosity, the fatigue fracture was clearly composed of crack initiation, propagation, and overloading. While for samples with high level of porosity, multiple crack initiation sites were observed.展开更多
In order to secure high strength and high elongation of suspension parts,it is critical to predict shrinkage porosity quantitatively.A new simulation method for quantitative prediction of shrinkage porosity when reple...In order to secure high strength and high elongation of suspension parts,it is critical to predict shrinkage porosity quantitatively.A new simulation method for quantitative prediction of shrinkage porosity when replenishing molten metal has been proposed for squeeze casting process.To examine the accuracy of the calculation model,the proposed method was applied to a plate model.展开更多
Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "c...Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.展开更多
The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was pred...The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.展开更多
In order to reduce the shrinkage porosity of nickel-based superalloy castings in the investment casting process,the effects of different gating systems on mold filling,solidification process,and prediction of shrinkag...In order to reduce the shrinkage porosity of nickel-based superalloy castings in the investment casting process,the effects of different gating systems on mold filling,solidification process,and prediction of shrinkage porosity of aero-engine turbine nozzle castings were investigated by simulation and experimental methods.Results show that the design of the vertical runner would cause greater turbulence of the melt in the riser during the mold filling process,and the outer runner is not necessary.With the decrease in number of runners,the hot spot moves down towards the casting,and the shrinkage and porosity defects are formed in the casting below the riser.In the original designs,a certain tendency of shrinkage and porosity defect is found in the vanes,inner rings,and outer rings of the castings by both simulation prediction and experiment.Finally,based on the processing optimization,the aero-engine turbine nozzle casting with no shrinkage and porosity defects is obtained.展开更多
The effect of mold hardness on the microstructure of ductile iron and the contraction porosity was investigated.Molds with different hardnesses(0.41,0.48,0.55,0.62 MPa)and a sand mold prepared by Co2 method were use...The effect of mold hardness on the microstructure of ductile iron and the contraction porosity was investigated.Molds with different hardnesses(0.41,0.48,0.55,0.62 MPa)and a sand mold prepared by Co2 method were used.The influence of silicon content on the induced expansion pressure owing to the formation of graphite was also investigated.The contraction during solidification can be compensated by an induced expansion owing to the graphite relief when the hardness of mold increases;therefore,the possibility of achieving a sound product without using any riser increases.展开更多
The Reynolds number of molten metal flowing mold cavity causes bulk turbulence and is the main cause of defects like shrinkage porosity and sand erosion.Machined housings with shrinkage porosity at critical bearing bo...The Reynolds number of molten metal flowing mold cavity causes bulk turbulence and is the main cause of defects like shrinkage porosity and sand erosion.Machined housings with shrinkage porosity at critical bearing bores and surface made the casting useless.In old gating casting areas of perimeters 290mm and 264mm of transmission housing,Reynolds numbers were observed as 16307 and 13806,respectively using simulation software.Data were collected from experiments to change casting area perimeters from 785mm and 785mm along with the addition of overlap area.New Reynolds numbers at two locations were observed as 3705 and 3393,respectively.Molten metal pressure,velocity and temperature results were related for final shrinkage results of the components on full production.The purpose of the study is to reduce shrinkage and porosity defects in green sand casting part using MAGMAS simulation software.High outcome was the reduction of casting machining rejection in transmission housing casting from 5.8%0.7%with savings of approximately 0.13 million USD over the period of 14 months.Implications of this work include casting defects study and reduction in different grades and weight range.展开更多
文摘The present research has developed a novel investment casting process for ingot production of TiAl alloys through forming a small vertical temperature gradient on the mold.The advantage of this process is to guarantee that the castings solidify sequentially from bottom to top.The analysis of numerical simulation and experimental results showed that the shrinkage porosity of Ti-47Al-2Cr-2Nb alloy was significantly improved by forming a vertical temperature gradient of 3 oC/mm on the mold,while the increase of pouring temperature and pressure on the molten alloys had no apparent effect on the reduction of shrinkage porosity.The critical value of the Niyama criterion that can reliably predict the shrinkage porosity in Ti-47Al-2Cr-2Nb alloy was identified by the comparison of experimental and simulated results.
基金supported by the National Natural Science Foundation of China(Grant No.51305350)the Natural Science Foundation of Shaanxi Province(No.2013JM6011)the Basic Researches Foundation of NWPU(No.3102014JCQ01045)
文摘Shrinkage porosity exists more or less in heavy castings, and it plays an important role in the fatigue behavior of cast materials. In this study, fatigue tests were carried out on the QT400-18 cast iron specimens containing random degrees of shrinkage porosity defect. Experimental results showed that the order of magnitude of life scattered from 103 to 106 cycles when the shrinkage percentage ranged from 0.67% to 5.91%. SEM analyses were carried out on the shrinkage porosity region. The inter-granular discontinuous, micro cracks and inclusions interfered with the fatigue sliding or hindering process. The slip in shrinkage porosity region was not as orderly as the ordinary continuous medium. The shrinkage porosity area on fracture surface(SPAFS) and alternating stress intensity factor(ASIF) were applied to evaluate the tendency of residual life distribution; their relationship was fitted by negative exponent functions. Based on the intermediate variable of ASIF, a fatigue life prediction model of nodular cast iron containing shrinkage porosity defects was established. The modeling prediction was in agreement with the experimental results.
基金supported by the Fund Project for Transformation of Science&Technology Achievements from Jiangsu Province(No.BA2009022)the National Innovation Fund for Small and Medium Technology Based Firms(No.10C26213204040)
文摘Casting defects could largely affect the mechanical properties of casting products. A number of test pieces made of ductile iron (EN-GJS-400-18-LT) with different levels of shrinkage porosity were prepared and then tensile and fatigue tests were performed to investigate the impact of shrinkage porosity on their mechanical properties. The results showed that the tensile strength decreases linearly with increasing of the shrinkage porosity. The tensile elongation decreases sharply with the increase of the shrinkage porosity mainly due to the non-uniform plastic deformation. The fatigue life also dramatically declines with increasing of the porosity and follows a power law relationship with the area percentage of porosity. The existence of the shrinkage porosity made the fatigue fracture complex. The shrinkage pores, especially those close to the surface usually became the crack initiation sites. For test pieces with less porosity, the fatigue fracture was clearly composed of crack initiation, propagation, and overloading. While for samples with high level of porosity, multiple crack initiation sites were observed.
文摘In order to secure high strength and high elongation of suspension parts,it is critical to predict shrinkage porosity quantitatively.A new simulation method for quantitative prediction of shrinkage porosity when replenishing molten metal has been proposed for squeeze casting process.To examine the accuracy of the calculation model,the proposed method was applied to a plate model.
基金supported by the National Natural Science Foundation of China(Grant No.51305350)the Basic Research Foundation of NWPU(No.3102014JCQ01045)
文摘Shrinkage porosity is a type of random distribution defects and exists in most large castings. Different from the periodic symmetry defects or certain distribution defects, shrinkage porosity presents a random "cloud-like" configuration, which brings difficulties in quantifying the effective performance of defected casting. In this paper, the influences of random shrinkage porosity on the equivalent elastic modulus of QT400-18 casting were studied by a numerical statistics approach. An improved random algorithm was applied into the lattice model to simulate the "cloud-like" morphology of shrinkage porosity. Then, a large number of numerical samples containing random levels of shrinkage were generated by the proposed algorithm. The stress concentration factor and equivalent elastic modulus of these numerical samples were calculated. Based on a statistical approach, the effects of shrinkage porosity's distribution characteristics, such as area fraction, shape, and relative location on the casting's equivalent mechanical properties were discussed respectively. It is shown that the approach with randomly distributed defects has better predictive capabilities than traditional methods. The following conclusions can be drawn from the statistical simulations:(1) the effective modulus decreases remarkably if the shrinkage porosity percent is greater than 1.5%;(2) the average Stress Concentration Factor(SCF) produced by shrinkage porosity is about 2.0;(3) the defect's length across the loading direction plays a more important role in the effective modulus than the length along the loading direction;(4) the surface defect perpendicular to loading direction reduces the mean modulus about 1.5% more than a defect of other position.
文摘The filling and solidification of a malleable iron pipe casting manufactured by DISA casting mold line with different design parameters were calculated by using software MAGMASOFT. Then the shrinkage porosity was predicted by thermal criterion. Based on the simulation results, the influences of the runner ratio and feeder position on the porosity were discussed. The results show that synchronization of injection can be significantly influenced by the size of downsprue section, and an de-sign structure of DISA gating system was used to solve the problem of flow imbalance in the filling procegs. At the same time, the riser was designed on the hotspot for feeding shrinkage. At last, the optimizated gating system and feeding system were ac-complished to eliminate shrinkage porosity.
文摘In order to reduce the shrinkage porosity of nickel-based superalloy castings in the investment casting process,the effects of different gating systems on mold filling,solidification process,and prediction of shrinkage porosity of aero-engine turbine nozzle castings were investigated by simulation and experimental methods.Results show that the design of the vertical runner would cause greater turbulence of the melt in the riser during the mold filling process,and the outer runner is not necessary.With the decrease in number of runners,the hot spot moves down towards the casting,and the shrinkage and porosity defects are formed in the casting below the riser.In the original designs,a certain tendency of shrinkage and porosity defect is found in the vanes,inner rings,and outer rings of the castings by both simulation prediction and experiment.Finally,based on the processing optimization,the aero-engine turbine nozzle casting with no shrinkage and porosity defects is obtained.
文摘The effect of mold hardness on the microstructure of ductile iron and the contraction porosity was investigated.Molds with different hardnesses(0.41,0.48,0.55,0.62 MPa)and a sand mold prepared by Co2 method were used.The influence of silicon content on the induced expansion pressure owing to the formation of graphite was also investigated.The contraction during solidification can be compensated by an induced expansion owing to the graphite relief when the hardness of mold increases;therefore,the possibility of achieving a sound product without using any riser increases.
文摘The Reynolds number of molten metal flowing mold cavity causes bulk turbulence and is the main cause of defects like shrinkage porosity and sand erosion.Machined housings with shrinkage porosity at critical bearing bores and surface made the casting useless.In old gating casting areas of perimeters 290mm and 264mm of transmission housing,Reynolds numbers were observed as 16307 and 13806,respectively using simulation software.Data were collected from experiments to change casting area perimeters from 785mm and 785mm along with the addition of overlap area.New Reynolds numbers at two locations were observed as 3705 and 3393,respectively.Molten metal pressure,velocity and temperature results were related for final shrinkage results of the components on full production.The purpose of the study is to reduce shrinkage and porosity defects in green sand casting part using MAGMAS simulation software.High outcome was the reduction of casting machining rejection in transmission housing casting from 5.8%0.7%with savings of approximately 0.13 million USD over the period of 14 months.Implications of this work include casting defects study and reduction in different grades and weight range.