期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Active inductor shunt peaking in high-speed VCSEL driver design 被引量:1
1
作者 梁福田 GONG Datao +7 位作者 HOU Suen LIU Chonghan LIU Tiankuan SU Da-Shung TENG Ping-Kun XIANG Annie YE Jingbo 金革 《Chinese Physics C》 SCIE CAS CSCD 2013年第11期45-48,共4页
An all-transistor active-inductor shunt-peaking structure has been used in a prototype of 8 Gbps high- speed VCSEL driver which is designed for the optical link in ATLAS liquid Argon calorimeter upgrade. The VCSEL dri... An all-transistor active-inductor shunt-peaking structure has been used in a prototype of 8 Gbps high- speed VCSEL driver which is designed for the optical link in ATLAS liquid Argon calorimeter upgrade. The VCSEL driver is fabricated in a commercial 0.25 p^m Silicon-on-Sapphire (SOS) CMOS process for radiation tolerant purpose. The all-transistor active-inductor shunt-peaking is used to overcome the bandwidth limitation from the CMOS pro- cess. The peaking structure has the same peaking effect as the passive one, but takes a small area, does not need linear resistors and can overcome the process variation by adjust the peaking strength via an external control. The design has been taped out, and the prototype has been proven by the preliminary electrical test results and bit error ratio test results. The driver achieves 8 Gbps data rate as simulated with the peaking. We present the all-transistor active-inductor shunt-peaking structure, simulation and test results in this paper. 展开更多
关键词 active inductor shunt peaking high-speed VCSEL driver ASIC
原文传递
5Gb/s 0.25μm CMOS Limiting Amplifier
2
作者 胡艳 王志功 +1 位作者 冯军 熊明珍 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2003年第12期1250-1254,共5页
A limiting amplifier (LA) IC implemented in TSMC standard 0.25μm CMOS technology is described.Active inductor loads and direct-coupled technology are employed to increase the gain,broaden the bandwidth,reduce the pow... A limiting amplifier (LA) IC implemented in TSMC standard 0.25μm CMOS technology is described.Active inductor loads and direct-coupled technology are employed to increase the gain,broaden the bandwidth,reduce the power dissipation,and keep a tolerable noise performance.Under a 3.3V supply voltage,the LA core achieves a gain of 50-dB with a power consumption below 40mW.The measured input sensitivity of the amplifier is better than 5m V _ pp .It can operate at bit rates up to 7Gb/s with an rms jitter of 0.03 UI or less.The chip area is only 0.70mm×0.70mm.According to the measurement results,this IC is expected to work at the standard bit rate levels of 2.5,3.125,and 5Gb/s. 展开更多
关键词 limiting amplifier active inductor shunt peaking technique CMOS
下载PDF
A Low Noise,1.25Gb/s Front-End Amplifier for Optical Receivers
3
作者 薛兆丰 李智群 +2 位作者 王志功 熊明珍 李伟 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第8期1373-1377,共5页
This paper presents a low noise, 1.25Gb/s and 124dBΩ front-end amplifier that is designed and fabricated in 0.25μm CMOS technology for optical communication applications. Active inductor shunt peaking technology and... This paper presents a low noise, 1.25Gb/s and 124dBΩ front-end amplifier that is designed and fabricated in 0.25μm CMOS technology for optical communication applications. Active inductor shunt peaking technology and noise optimization are used in the design of a trans-impedance amplifier,which overcomes the problem of inadequate bandwidth caused by the large parasitical capacitor of the CMOS photodiode. Experimental results indicate that with a parasitical capacitance of 2pF,this circuit works at 1.25Gb/s. A clear eye diagram is obtained with an input optical signal of - 17dBm. With a power supply of 3.3V, the front-end amplifier consumes 122mW and provides a 660mV differential output. 展开更多
关键词 front-end amplifier T1A shunt peaking active inductor
下载PDF
LOW-POWER LVDS I/O INTERFACE FOR ABOVE 2GB/S-PER-PIN OPERATION 被引量:3
4
作者 Wang Xihu Wu Longsheng Liu Youbao 《Journal of Electronics(China)》 2009年第4期525-531,共7页
Low Voltage Differential Signaling (LVDS) has become a popular choice for high-speed serial links to conquer the bandwidth bottleneck of intra-chip data transmission. This paper presents the design and the implementat... Low Voltage Differential Signaling (LVDS) has become a popular choice for high-speed serial links to conquer the bandwidth bottleneck of intra-chip data transmission. This paper presents the design and the implementation of LVDS Input/Output (I/O) interface circuits in a standard 0.18 μm CMOS technology using thick gate oxide devices (3.3 V), fully compatible with LVDS standard. In the proposed transmitter, a novel Common-Mode FeedBack (CMFB)circuit is utilized to keep the common-mode output voltage stable over Process, supply Voltage and Temperature (PVT) variations. Because there are no area greedy resistors in the CMFB circuitry, the disadvantage of large die area in existing transmitter structures is avoided. To obtain sufficient gain, the receiver consists of three am- plifying stages: a voltage amplifying stage, a transconductance amplifying stage, and a transimpedance amplifying stage. And to exclude inner nodes with high RC time constant, shunt-shunt negative feedback is introduced in the receiver. A novel active inductor shunt peaking structure is used in the receiver to fulfill the stringent requirements of high speed and wide Common-Mode Input Region (CMIR) without voltage gain, power dissipation and silicon area penalty. Simulation results show that data rates of 2 Gbps and 2.5 Gbps are achieved for the transmitter and receiver with power con- sumption of 13.2 mW and 8.3 mW respectively. 展开更多
关键词 Input/Output (I/O) Low Voltage Differential Signaling (LVDS) TRANSMITTER Receiver Active inductor shunt peaking
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部