期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Machine learning technique for prediction of magnetocaloric effect in La(Fe,Si/Al)_(13)-based materials 被引量:3
1
作者 Bo Zhang Xin-Qi Zheng +3 位作者 Tong-Yun Zhao Feng-Xia Hu Ji-Rong Sun Bao-Gen Shen 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第6期92-97,共6页
Data-mining techniques using machine learning are powerful and efficient for materials design, possessing great potential for discovering new materials with good characteristics. Here, this technique has been used on ... Data-mining techniques using machine learning are powerful and efficient for materials design, possessing great potential for discovering new materials with good characteristics. Here, this technique has been used on composition design for La(Fe,Si/Al)(13)-based materials, which are regarded as one of the most promising magnetic refrigerants in practice. Three prediction models are built by using a machine learning algorithm called gradient boosting regression tree(GBRT) to essentially find the correlation between the Curie temperature(TC), maximum value of magnetic entropy change((?SM)(max)),and chemical composition, all of which yield high accuracy in the prediction of TC and(?SM)(max). The performance metric coefficient scores of determination(R^2) for the three models are 0.96, 0.87, and 0.91. These results suggest that all of the models are well-developed predictive models on the challenging issue of generalization ability for untrained data, which can not only provide us with suggestions for real experiments but also help us gain physical insights to find proper composition for further magnetic refrigeration applications. 展开更多
关键词 La(Fe si/Al)13-based materials composition design machine learning magnetic refrigeration
下载PDF
The mitigation of pitch-derived carbon with different structures on the volume expansion of silicon in Si/C composite anode 被引量:1
2
作者 Xin Xue Xiao Liu +5 位作者 Bin Lou Yuanxi Yang Nan Shi FuShan Wen Xiujie Yang Dong Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期292-302,共11页
The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear... The microstructures of carbon precursors significantly affect the electrochemical performance of Si/C composite anodes.However,the interaction between Si and carbon materials with different structures is still unclear.Pitch-based materials undergoing different thermal treatments are superior sources for synthesizing carbons with different structures.Herein,different types of mesophase pitch(domain,flow-domain and mosaic structure) obtained from controllable thermal condensation are utilized to prepare Si/C composite materials and the corresponding models are established through finite element simulation to explore the correlation between the lithium storage properties of Si/C composites and the structures of carbon materials.The results indicate that the flow-domain texture pitch P2 has a better ability to buffer the volume expansion of silicon particles for its highly ordered arrangement of carbon crystallites inside could disperse the swelling stress uniformly alongside the particle surface.The sample Si@P2 exhibits the highest capacity of 1328 mA h/g after 200 cycles at a current density of 0.1 A/g as well as the best rate performance and stability.While sample Si@P3 in which the mosaic texture pitch P3 composed of random orientation of crystallites undergoes the fastest capacity decay.These findings suggest that highly ordered carbon materials are more suitable for the synthesis of Si/C composite anodes and provide insights for understanding the interaction between carbon and silicon during the charging/discharging process. 展开更多
关键词 si/C composite materials Mesophase pitch Finite element simulation Volume expansion
下载PDF
Evolution of Self-Organized Ge Quantum Dots During Ultra High Vacuum Annealing
3
作者 胡冬枝 杨建树 +3 位作者 蔡群 张翔九 胡际璜 蒋最敏 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2002年第6期561-564,共4页
The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When t... The evolution of self organized Ge quantum dots structure is investigated by scanning tunneling microscopy and atomic force microscopy during annealing treatment up to 700℃ in an ultra high vacuum(UHV) system.When the sample temperature rises to 630℃,a great amount of new dots emerge on the wetting layer,which are believed to be incoherent islands compared with the dislocation free coherent islands formed during molecular beam epitaxy growth. 展开更多
关键词 quantum dots si based materials evolution of morphology atomic force microscopy
下载PDF
红色长余辉发光材料Sr_5Al_2O_7S∶Eu^(2+)的制备及发光性能 被引量:1
4
作者 王红伟 王保玉 +1 位作者 马科友 张学英 《有色金属(冶炼部分)》 CAS 北大核心 2013年第8期53-55,共3页
以工业铝酸钠溶液制备的氢氧化铝为原料,采用高温固相反应法合成了Sr5Al2O7S∶Eu2+红色长余辉材料。用X射线衍射仪及荧光分光光度计对材料的物相及光谱性能进行了分析,考察稀土掺杂量对样品发光性能的影响。结果表明,在稀土激活剂的掺杂... 以工业铝酸钠溶液制备的氢氧化铝为原料,采用高温固相反应法合成了Sr5Al2O7S∶Eu2+红色长余辉材料。用X射线衍射仪及荧光分光光度计对材料的物相及光谱性能进行了分析,考察稀土掺杂量对样品发光性能的影响。结果表明,在稀土激活剂的掺杂量x(Eu)=6%、硼酸加入量9%、1 200℃烧结8h的条件下合成的样品为Sr5Al2O7S∶Eu2+的纯相,激发光谱位于400~500nm,主发射波长在600nm左右,余辉为桔红色。 展开更多
关键词 长余辉发光材料 Sr5Al2O7S∶Eu2+ 高温固相合成 发光性能 铝酸钠
下载PDF
Potential of asymmetrical Si/Ge and Ge/Si based hetero-junction transit time devices over homo-junction counterparts for generation of high power
5
作者 Moumita Mukherjee Pravash R.Tripathy S.P.Pati 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2011年第11期24-30,共7页
Static and dynamic properties of both complementary n-Ge/p-Si and p-Ge/n-Si hetero-junction DoubleDrift IMPATT diodes have been investigated by an advanced and realistic computer simulation technique, devel- oped by t... Static and dynamic properties of both complementary n-Ge/p-Si and p-Ge/n-Si hetero-junction DoubleDrift IMPATT diodes have been investigated by an advanced and realistic computer simulation technique, devel- oped by the authors, for operation in the Ka-, V- and W-band frequencies. The results are further compared with corresponding Si and Ge homo-junction devices. The study shows high values of device efficiency, such as 23%, 22% and 21.5%, for n-Ge/p-Si IMPATTs at the Ka, V and W bands, respectively. The peak device negative con- ductances for n-Si/p-Ge and n-Ge/p-Si hetero-junction devices found to be 50.7× 10^6 S/m^2 and 71.3× 106 S/m^2, which are -3-4 times better than their Si and Ge counterparts at the V-band. The computed values of RF powerdensity for n-Ge/p-Si hetero-junction IMPATTs are 1.0 ×10^9, 1.1 × 10^9 and 1.4× 10^9 W/m^2, respectively, for Ka-, V- and W-band operation, which can be observed to be the highest when compared with Si, Ge and n-Si/p-Ge devices. Both of the hetero-junctions, especially the n-Ge/p-Si hetero-junction diode, can thus become a superior RF-power generator over a wide range of frequencies. The present study will help the device engineers to choose a suitable material pair for the development of high-power MM-wave IMPATT for applications in the civil and defense-related arena. 展开更多
关键词 admittance characteristics double drift diode high-power IMPATT high-efficiency MM-wave de- vice si/Ge and Ge/si material systems
原文传递
1:13 phase formation mechanism and first-order magnetic transition strengthening characteristics in(La,Ce)Fe13–xSix alloys 被引量:6
6
作者 Xiang Chen Yun-Gui Chen +1 位作者 Yong-Bo Tang Ding-Quan Xiao 《Rare Metals》 SCIE EI CAS CSCD 2016年第9期691-700,共10页
The effects of the introduction of Ce to La(1-x)CexFe(11.5)Si(1.5) alloys on 1:13 phase formation mechanism,the first-order magnetic phase transition strengthening characteristics,and magnetocaloric property we... The effects of the introduction of Ce to La(1-x)CexFe(11.5)Si(1.5) alloys on 1:13 phase formation mechanism,the first-order magnetic phase transition strengthening characteristics,and magnetocaloric property were studied,respectively.The results show that the formation mechanisms of 1:13 and La Fe Si phases in La(1-x)CexFe(11.5)Si(1.5) alloys are the same as those of Ce2Fe(17) and CeFe2 phases in Ce–Fe binary system,respectively.The substitution of Ce in 1:13 phase which is limited can make the first-order magnetic phase transition characteristics strengthen,which can make thermal and magnetic hysteresis increase,the temperature interval of temperatureinduced phase transition decrease,and the critical magnetic field of field-induced magnetic phase transition(HC)increase,respectively.Owing to the lattice shrink of 1:13phase with the increase in Ce content,the Curie temperatures(TC) show a linear decrease.The maximum change in magnetic entropy gradually increases due to the decrease in temperature interval of temperature-induced phase transition,but the relative cooling capacities are all about80 Jákg-1at magnetic field of 2 T. 展开更多
关键词 La1-xCexFe1 5si1 5alloys Short-time annealing Large magnetocaloric effect Magnetocaloric materials
原文传递
Preparation of rare-earth element doped Mg_2Si by FAPAS
7
作者 王丽七 孟庆森 樊文浩 《Journal of Semiconductors》 EI CAS CSCD 2012年第11期32-36,共5页
Rare-earth elements(Re) Sc and Y doped Mg_2Si thermoelectric materials were made via a field-activated and pressure-assisted synthesis(FAPAS) method at 1023-1073 K,50 MPa for 15 min.The samples created using this ... Rare-earth elements(Re) Sc and Y doped Mg_2Si thermoelectric materials were made via a field-activated and pressure-assisted synthesis(FAPAS) method at 1023-1073 K,50 MPa for 15 min.The samples created using this method have uniform and compact structures.The average grain size was about 1.5-2μm,the micro-content of Re did not change the matrix morphology.The sample with 2500 ppm Sc obtained the best Seebeck coefficient absolute value,about 1.93 times of that belonging to non-doped Mg_2Si at about 408 K.The electric conductivity of the sample doped with 2000 ppm Y becomes 1.69 times of that of pure Mg_2Si at 468 K,while the former had a better comprehensive electrical performance.Their thermal conductivity was reduced to 70%and 84% of that of non-doped Mg_2Si.Thus,the figure of merit and ZT of these two samples were enhanced visibly,which were 3.3 and 2.4 times of the non-doped samples at 408 K and 468 K,respectively.The maximal ZT belonging to samples doped with 2500 ppm Sc went up to 0.42 at about 498 K,higher than 0.40 of sample doped with 2000 ppm Y at 528 K and 0.25 of non-doped Mg_2Si at 678 K,and the samples doped with Sc seemed to get the best thermoelectric performances at lower temperature. 展开更多
关键词 Mg_2si rare-earth element thermoelectric material FAPAS
原文传递
Thermoelectric transport properties and structure of Mg_2Si_(0.8)Sn_(0.2)prepared by ECAS under different current intensities
8
作者 Wen-Hao Fan Yuan-Yuan Jiao +3 位作者 Rui-Xue Chen Di-Yang Wu Qing-Sen Meng Shao-Ping Chen 《Rare Metals》 SCIE EI CAS CSCD 2014年第2期215-218,共4页
Thermoelectric materials Mg2Si0.8Sn0.2 were sintered under three different conditions including no electricity sintering(NCS), low electricity sintering(LCS),and high electricity sintering(HCS). Thermoelectric p... Thermoelectric materials Mg2Si0.8Sn0.2 were sintered under three different conditions including no electricity sintering(NCS), low electricity sintering(LCS),and high electricity sintering(HCS). Thermoelectric performance and microstructure of three group samples were measured and compared. The results indicate that the application of electric current during the sintering process changes the microstructure and significantly increases the density of samples, and increases the electric conductivity and the power factor. The electric current activated/assisted sintering is an effective way to obtain thermoelectric materials with excellent performance. 展开更多
关键词 Thermoelectric materials Mg2si0.8Sn0.2 ECAS Electric current
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部