Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community.In this study,atom probe tomogra...Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community.In this study,atom probe tomography is performed to study the structures and distribution of impurity in phosphorous/boron co-doped Si nanocrystals/SiO_(2) multilayers.Compared with phosphorous singly doped Si nanocrystals,it is interesting to find that the concentration of phosphorous in co-doped samples can be significantly improved.Theoretical simulation suggests that phosphorous-boron pairs are formed in co-doped Si nanocrystals with the lowest formation energy,which also reduces the formation energy of phosphorous in Si nanocrystals.The results indicate that co-doping can promote the entry of phosphorous impurities into the near-surface and inner sites of Si nanocrystals,which provides an interesting way to regulate the electronic and optical properties of Si nanocrystals such as the observed enhancement of conductivity and sub-band light emission.展开更多
The nonlinear optical properties of Al-doped nc-Si-SiO2 composite films have been investigated using the time-resolved four-wave mixing technique with a femtosecond laser. The off-resonant third-order nonlinear suscep...The nonlinear optical properties of Al-doped nc-Si-SiO2 composite films have been investigated using the time-resolved four-wave mixing technique with a femtosecond laser. The off-resonant third-order nonlinear susceptibility is observed to be 1.0 × 10-10 esu at 800nm. The relaxation time of the optical nonlinearity in the films is as short as 60fs. The optical nonlinearity is enhanced due to the quantum confinement of electrons in Si nanocrystals embedded in the SiO2 films. The enhanced optical nonlinearity does not originate from Al dopant because there are no Al clusters in the films.展开更多
Microstructure modification of silicon nanograins embedded in silicon nitride films by introducing hydrogen reactant in the plasma enhanced chemical vapour deposition process and their optical properties are analysed ...Microstructure modification of silicon nanograins embedded in silicon nitride films by introducing hydrogen reactant in the plasma enhanced chemical vapour deposition process and their optical properties are analysed using Raman scattering, optical absorption and photoluminescence (PL) measurements. It is found that the silicon nanograins embedded in the silicon nitride (SiNx) matrix are transformed into silicon nanocrystals and the optical properties of the films change dramatically when introducing H2 into Ar-sustained plasma. The optical absorption coefficient of the films within the band gap decreases by about one order of magnitude and the PL intensity increases significantly, compared with that without hydrogen introduction. These results suggest that atomic hydrogen in the plasma has the function of crystallizing silicon nanograins and passivating defects at the silicon nanograins/SiNx interface.展开更多
Erbium chloride silicate(ECS)nanocrystals and Si nanocrystals(Si NCs)co-embedded in silica films were prepared.And the sensitized luminescence of ECS was realized through interparticle energy transfer(IPET)in solid ma...Erbium chloride silicate(ECS)nanocrystals and Si nanocrystals(Si NCs)co-embedded in silica films were prepared.And the sensitized luminescence of ECS was realized through interparticle energy transfer(IPET)in solid matrix.We focus on the effect of annealing temperature on the film microstructure and sensitized luminescence.The samples annealed at 1100℃have a moderate level of energy transfer efficiency and total Er3+concentration capable of radiative recombination.At the same time,they also have high luminescence intensity of Si NCs.Therefore,the samples annealed at 1100℃have good sensitizing luminescence performance of ECS.The strong luminesce nce intensity of sensitizers Si NCs and adjacent crystalline ECS nanocrystals are the keys to achieve excellent IPET in the solid matrix.The results provide a basis for optimizing sensitized luminescence of erbium compounds by regulating annealing.展开更多
Total dose hardened fully-depleted SOI materials are fabricated on separation by implanted oxygen (SIMOX) materials by silicon ion implantation and annealing. The ID-VG characteristics of pseudo-MOS transistors pre-...Total dose hardened fully-depleted SOI materials are fabricated on separation by implanted oxygen (SIMOX) materials by silicon ion implantation and annealing. The ID-VG characteristics of pseudo-MOS transistors pre- and post-irradiation are tested with ^60Co gamma rays. The chemical bonds and the structure of Si in the buried oxide are also studied by X-ray photoelectron spectroscopy and cross-sectional high-resolution transmission electron microscopy, respectively. The results show that Si nanocrystals in the buried oxide produced by ion implantation are efficient deep electron traps, which can significantly compensate positive charge buildup during irradiation. Si implantation can enhance the total-dose radiation tolerance of the fully-depleted SOI materials.展开更多
基金Project supported by the National Key Research and Development Program of China (Grant No.2018YFB2200101)the National Natural Science Foundation of China (Grant Nos.62004078 and 61921005)+4 种基金Natural Science Foundation of Jiangsu Province (Grant No.BK20201073)Natural Science Foundation of Ningbo (Grant No.2021J068)ANR DONNA (Grant No.ANR-18-CE09-0034)Leading Innovative and Entrepreneur Team Introduction Program of Hangzhou (Grant No.TD2022012)partially supported by the CNRS Federation IRMA-FR 3095。
文摘Doping in Si nanocrystals is an interesting topic and directly studying the distribution of dopants in phosphorous/boron co-doping is an important issue facing the scientific community.In this study,atom probe tomography is performed to study the structures and distribution of impurity in phosphorous/boron co-doped Si nanocrystals/SiO_(2) multilayers.Compared with phosphorous singly doped Si nanocrystals,it is interesting to find that the concentration of phosphorous in co-doped samples can be significantly improved.Theoretical simulation suggests that phosphorous-boron pairs are formed in co-doped Si nanocrystals with the lowest formation energy,which also reduces the formation energy of phosphorous in Si nanocrystals.The results indicate that co-doping can promote the entry of phosphorous impurities into the near-surface and inner sites of Si nanocrystals,which provides an interesting way to regulate the electronic and optical properties of Si nanocrystals such as the observed enhancement of conductivity and sub-band light emission.
文摘The nonlinear optical properties of Al-doped nc-Si-SiO2 composite films have been investigated using the time-resolved four-wave mixing technique with a femtosecond laser. The off-resonant third-order nonlinear susceptibility is observed to be 1.0 × 10-10 esu at 800nm. The relaxation time of the optical nonlinearity in the films is as short as 60fs. The optical nonlinearity is enhanced due to the quantum confinement of electrons in Si nanocrystals embedded in the SiO2 films. The enhanced optical nonlinearity does not originate from Al dopant because there are no Al clusters in the films.
文摘Microstructure modification of silicon nanograins embedded in silicon nitride films by introducing hydrogen reactant in the plasma enhanced chemical vapour deposition process and their optical properties are analysed using Raman scattering, optical absorption and photoluminescence (PL) measurements. It is found that the silicon nanograins embedded in the silicon nitride (SiNx) matrix are transformed into silicon nanocrystals and the optical properties of the films change dramatically when introducing H2 into Ar-sustained plasma. The optical absorption coefficient of the films within the band gap decreases by about one order of magnitude and the PL intensity increases significantly, compared with that without hydrogen introduction. These results suggest that atomic hydrogen in the plasma has the function of crystallizing silicon nanograins and passivating defects at the silicon nanograins/SiNx interface.
基金the National Natural Science Foundation of China(61874095,61721005)。
文摘Erbium chloride silicate(ECS)nanocrystals and Si nanocrystals(Si NCs)co-embedded in silica films were prepared.And the sensitized luminescence of ECS was realized through interparticle energy transfer(IPET)in solid matrix.We focus on the effect of annealing temperature on the film microstructure and sensitized luminescence.The samples annealed at 1100℃have a moderate level of energy transfer efficiency and total Er3+concentration capable of radiative recombination.At the same time,they also have high luminescence intensity of Si NCs.Therefore,the samples annealed at 1100℃have good sensitizing luminescence performance of ECS.The strong luminesce nce intensity of sensitizers Si NCs and adjacent crystalline ECS nanocrystals are the keys to achieve excellent IPET in the solid matrix.The results provide a basis for optimizing sensitized luminescence of erbium compounds by regulating annealing.
文摘Total dose hardened fully-depleted SOI materials are fabricated on separation by implanted oxygen (SIMOX) materials by silicon ion implantation and annealing. The ID-VG characteristics of pseudo-MOS transistors pre- and post-irradiation are tested with ^60Co gamma rays. The chemical bonds and the structure of Si in the buried oxide are also studied by X-ray photoelectron spectroscopy and cross-sectional high-resolution transmission electron microscopy, respectively. The results show that Si nanocrystals in the buried oxide produced by ion implantation are efficient deep electron traps, which can significantly compensate positive charge buildup during irradiation. Si implantation can enhance the total-dose radiation tolerance of the fully-depleted SOI materials.