期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
1
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites si C particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Centrifugal casting processes of manufacturing in situ functionally gradient composite materials of Al-19Si-5Mg alloy 被引量:11
2
作者 XIE Yong LIU Changming ZHAI Yanbo WANG Kai LING Xuedong 《Rare Metals》 SCIE EI CAS CSCD 2009年第4期405-411,共7页
Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed an... Cylindrical components of in situ functionally gradient composite materials of Al-19Si-5Mg alloy were manufactured by centrifugal casting. Microstructure characteristics of the manufactured components were observed and the effects of the used process factors on these characteristics were analyzed. The results of observations shows that, in thickness, the components possess microstructures accumulating lots of Mg2Si particles and a portion of primary silicon particles in the inner layer, a little MgzSi and primary silicon particles in the outer layer, and without any Mg2Si and primary silicon particle in the middle layer. The results of the analysis indicate that the rotation rate of centrifugal casting, mould temperature, and melt pouring temperature have evidently affected the accumulation of the second phase particles. Also, the higher the centrifugal rotation rate, mould temperature, and melt pouring temperature are, the more evident in the inner layer the degree of accumulation of Mg2Si and primary silicon particles is. 展开更多
关键词 centrifugal casting Al-si-Mg alloys Mg2si particles silicon particles functionally gradient composites
下载PDF
Modification effect of Yb and Na_3PO_4 on microstructure of Mg_2Si/Mg-4Si alloy and mechanism 被引量:2
3
作者 Xiao-lin Wei Zheng Lian +2 位作者 Huai-zhi Zhao Lu Li Wen-bin Yu 《China Foundry》 SCIE 2015年第6期440-445,共6页
The modification effects of ytterbium(Yb), Na_3PO_4 and Yb + Na_3PO_4 on primary Mg_2Si phase in Mg-4Si alloys were investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy... The modification effects of ytterbium(Yb), Na_3PO_4 and Yb + Na_3PO_4 on primary Mg_2Si phase in Mg-4Si alloys were investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis in this work. The results indicate that the morphology of the primary Mg_2Si phase apparently changes from coarse dendrites to fine dispersive polygonal particles and the mean size decreases from 276.6 μm to 7.1 μm, with combined modification of 0.8wt.% Yb and 2.64 wt.% Na_3PO_4. Such a morphological evolution results in improvement in the ultimate tensile strength and elongation of the alloys as compared to the base alloy. This may be attributed to the formation of the YbP particles that acted as the heterogeneous nucleation substrates for the primary Mg_2Si particles, resulting in a refined distribution of these precipitates. The results of XRD examination show that there was no reaction between Si and Yb or Na_3PO_4. Solo addition of Yb or Na_3PO_4 into the melt has no real modification effect on the microstructure, but the primary Mg_2Si particles and α-Mg phases become coarser than that in the unmodified alloy. 展开更多
关键词 Mg alloy YB Na3PO4 MODIFICATION Mg2si particles
下载PDF
Absorption enhancement in thin film a-Si solar cells with double-sided SiO_2 particle layers 被引量:1
4
作者 陈乐 王庆康 +3 位作者 沈向前 陈文 黄堃 刘代明 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第10期186-190,共5页
Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is d... Light absorption enhancement is very important for improving the power conversion efficiency of a thin film a-Si solar cell. In this paper, a thin-film a-Si solar cell model with double-sided SiO2 particle layers is designed, and then the underlying mechanism of absorption enhancement is investigated by finite difference time domain(FDTD) simulation;finally the feasible experimental scheme for preparing the SiO2 particle layer is discussed. It is found that the top and bottom SiO2 particle layers play an important role in anti-reflection and light trapping, respectively. The light absorption of the cell with double-sided SiO2 layers greatly increases in a wavelength range of 300 nm-800 nm, and the ultimate efficiency increases more than 22% compared with that of the flat device. The cell model with double-sided SiO2 particle layers reported here can be used in varieties of thin film solar cells to further improve their performances. 展开更多
关键词 thin film a-si solar cells light trapping ANTI-REFLECTION si02 particle
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部