The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-scrip...The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-script shaped Mg2Si phase in the AZ61-0.7Si alloy.By adding 0.06wt.%-0.12wt.%Sr to AZ61-0.7Si alloy,the Mg2Si phase in the alloy can be changed from the initial coarse Chinese-script shape to fine granule and/or irregular polygonal shapes.Accordingly,the Sr-containing AZ61-0.7Si alloy exhibits higher tensile and creep properties than the AZ61-0.7Si alloy without Sr modification.The mechanism on modification and refinement of the Mg2Si phase in Sr-containing AZ61-0.7Si alloy is possibly related to the following two aspects:(1)adding Sr may form the Al4Sr phase which can serve as the heterogeneous nucleus for the Mg2Si particles and/or(2)adding Sr may lower the onset crystallizing temperature and increase the undercooling level.展开更多
The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and i...The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg17Al12 phase was refined and broken into some discontinuous island structures. However, some network Mg17Al12 phases still can be detected in Mg-12Al-0.7Si-0.09Sr alloy. Therefore, Sb performs better in modification and refinement of Mg17Al12 phase than does Sr. Small amounts of fine polygonal shaped Mg2Si phases were found in Mg-12AI-0.7Si-0.5Sb alloy, while the morphology of Mg2Si phases in Mg-12Al-0.7Si-0.09Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg2Si phase are more significant by adding 0.09wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 ℃.展开更多
Alumina/aluminum-silicon alloy composite is manufactured by squeeze casting. The effect of the reinforcementon the morphology of the silicon phase in aluminum-silicon alloy is studied. The results indicate that an alu...Alumina/aluminum-silicon alloy composite is manufactured by squeeze casting. The effect of the reinforcementon the morphology of the silicon phase in aluminum-silicon alloy is studied. The results indicate that an alumina fiber canserve as propitious sites for the heterogeneous nucleation of the silicon phase, and the primary silicon in the compositecan nucleate on the surface of the fiber. The fiber in the composite can trigger twin during the coupled growth of thealuminum-silicon eutectic and lead to modification of the eutectic silicon near the fiber.展开更多
The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-r...The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-rich parts of the isothermal section of the phase diagram at 300-600 ℃,and the three two-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2,FCC-A1(Cu-rich)+δ-Ni2Si and FCC-A1(Cu-rich)+ε-Ni3Si2,two three-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2+δ-Ni2Si and FCC-A1(Cu-rich)+δ-Ni2Si+ε-Ni3Si2. For this reason,an alloy located in the Cu-rich portion may precipitate γ-Ni5Si2,δ-Ni2Si or ε-Ni3Si2;the proportion of each phase depends on the alloy composition and aging temperature. The transmission electron microscope analysis of the Cu-3.2Ni-0.75Si alloy indicates that the precipitates are mainly δ-Ni2Si with only a few γ-Ni5Si2 phase particles,which agrees well with the thermodynamic calculations of phase equilibria.展开更多
Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fractur...Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fracture behavior. The results show that eutectic Si undergoes stubbing, necking, fragmentation, and growth in the initial stage (250 min); in the middle solution stage (250 to 400 min), the eutectic Si morphology has no significant change, only the degree of spheroidizing becomes higher; after 600 min, the growth of eutectic Si is a coarsening process controlled by diffusion and follows the Liftshitz-Slyozov-Wangner (LSW) model, and the eutectic Si morphology deteriorates due to the occurrence of facets and lap. Based on the quantitative measure and regression analysis, the eutectic Si morphology has a remarkable influence on mechanical properties and fracture behavior.展开更多
基金supported by the National Natural Science Funds for Distinguished Young Scholar in China(No.50725413)the Major State Basic Research Development Program of China(973)(No.2007CB613704)+1 种基金the Natural Science Foundation Project of CQ CSTC(No.2007BB4400)Chongqing Science and Technology Commission in China(No.2006AA4012-9-6).
文摘The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-script shaped Mg2Si phase in the AZ61-0.7Si alloy.By adding 0.06wt.%-0.12wt.%Sr to AZ61-0.7Si alloy,the Mg2Si phase in the alloy can be changed from the initial coarse Chinese-script shape to fine granule and/or irregular polygonal shapes.Accordingly,the Sr-containing AZ61-0.7Si alloy exhibits higher tensile and creep properties than the AZ61-0.7Si alloy without Sr modification.The mechanism on modification and refinement of the Mg2Si phase in Sr-containing AZ61-0.7Si alloy is possibly related to the following two aspects:(1)adding Sr may form the Al4Sr phase which can serve as the heterogeneous nucleus for the Mg2Si particles and/or(2)adding Sr may lower the onset crystallizing temperature and increase the undercooling level.
基金financially supported by the National Natural Science Foundation of China(Grant nos.:51301118,51404166)the Projects of International Cooperation in Shanxi province,China(Grant no.:2014081002)and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi province,China(Grant nos.:2013108,2014120)
文摘The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg17Al12 phase was refined and broken into some discontinuous island structures. However, some network Mg17Al12 phases still can be detected in Mg-12Al-0.7Si-0.09Sr alloy. Therefore, Sb performs better in modification and refinement of Mg17Al12 phase than does Sr. Small amounts of fine polygonal shaped Mg2Si phases were found in Mg-12AI-0.7Si-0.5Sb alloy, while the morphology of Mg2Si phases in Mg-12Al-0.7Si-0.09Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg2Si phase are more significant by adding 0.09wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 ℃.
文摘Alumina/aluminum-silicon alloy composite is manufactured by squeeze casting. The effect of the reinforcementon the morphology of the silicon phase in aluminum-silicon alloy is studied. The results indicate that an alumina fiber canserve as propitious sites for the heterogeneous nucleation of the silicon phase, and the primary silicon in the compositecan nucleate on the surface of the fiber. The fiber in the composite can trigger twin during the coupled growth of thealuminum-silicon eutectic and lead to modification of the eutectic silicon near the fiber.
基金Project(2006DFB53050) supported by the International Science and Technology Cooperation Project of the Science and Technology Ministry of China
文摘The thermodynamic calculation of phase equilibria in the Cu-Ni-Si alloy system was carried out using the CALPHAD method. The calculations show that there are three two-phase areas and two three-phase areas in the Cu-rich parts of the isothermal section of the phase diagram at 300-600 ℃,and the three two-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2,FCC-A1(Cu-rich)+δ-Ni2Si and FCC-A1(Cu-rich)+ε-Ni3Si2,two three-phase areas are FCC-A1(Cu-rich)+γ-Ni5Si2+δ-Ni2Si and FCC-A1(Cu-rich)+δ-Ni2Si+ε-Ni3Si2. For this reason,an alloy located in the Cu-rich portion may precipitate γ-Ni5Si2,δ-Ni2Si or ε-Ni3Si2;the proportion of each phase depends on the alloy composition and aging temperature. The transmission electron microscope analysis of the Cu-3.2Ni-0.75Si alloy indicates that the precipitates are mainly δ-Ni2Si with only a few γ-Ni5Si2 phase particles,which agrees well with the thermodynamic calculations of phase equilibria.
基金financially supported by the Fundamental Research Funds for the Central Universities,China(No.2020CDJDPT001)the Chongqing Natural Science Foundation,China(No.cstc2021jcyj-msxm X0699)。
基金supported by the National Natural Science Foundation,China (No.52074131)the National Key R&D Project,China (No.2022YFC3900500)+2 种基金the International Technology Cooperation Program of Guangdong Academy of Sciences,China (No.2020GDASYL-20200504001)the Open Competition to Select the Best Candidate of Shangrao,China (No.2021A005)the BL13HB beamline of Shanghai Synchrotron Radiation Facility (SSRF)for providing synchrotron radiation beamtime (Nos.2020-SSRF-PT-011937,2021-SSRF-PT-017645).
文摘Using an optical microscope and scanning electron microscope (SEM), the variation of eutectic Si morphology of Al-Si alloy in solution treatment was observed to study its influence on mechanical properties and fracture behavior. The results show that eutectic Si undergoes stubbing, necking, fragmentation, and growth in the initial stage (250 min); in the middle solution stage (250 to 400 min), the eutectic Si morphology has no significant change, only the degree of spheroidizing becomes higher; after 600 min, the growth of eutectic Si is a coarsening process controlled by diffusion and follows the Liftshitz-Slyozov-Wangner (LSW) model, and the eutectic Si morphology deteriorates due to the occurrence of facets and lap. Based on the quantitative measure and regression analysis, the eutectic Si morphology has a remarkable influence on mechanical properties and fracture behavior.