The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosi...The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosion mechanism associated with them in Al-Mg-Si alloys was advanced. The results show that Si particle is always cathodic to the alloy base, Mg2Si is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Mg and the enrichment of Si make Mg2Si transform to cathode from anode, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery at a later stage. As the mole ratio of Mg to Si in an Al-Mg-Si alloy is less than 1.73, it contains Mg2Si and Si particles simultaneously in the grain boundary area, and corrosion initiates on the Mg2Si surface and the precipitate-free zone (PFZ) at the adjacent periphery of Si particle. As corrosion time is extended, Si particle leads to severe anodic dissolution and corrosion of the PFZ at its adjacent periphery, expedites the polarity transformation between Mg2Si and the PFZ and accelerates the corrosion of PFZ at the adjacent periphery of Mg2Si particle.展开更多
The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese scr...The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese script shape Mg2Si phases can be formed by adding SiO2 into AZ91D magnesium alloy with Si content up to 1.5% of the alloy melt.During solution treatment,the morphology and distribution of the coarse Chinese script shape Mg2Si phases are modified.Meanwhile,the β-Mg17Al12 phase is dissolved into the magnesium matrix.With increasing holding time,the coarse Mg2Si phases tend to dissolve,break and spheroidize.After solution treatment at 420 ℃ for 16 h,Mg2Si phases become the finest and relatively well-distributed phase.The tensile strength and elongation are increased by 14.9% and 38.9%,respectively.It is believed that the Mg2Si phases continuously dissolve and break,and finally the spheroidized Mg2Si particles are obtained due to the interface tension of Mg2Si/Mg interface.展开更多
The microstructure and rheological behavior of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state were investigated.The results show that the primary α-Mg phases are knapped by mechanical stirring and t...The microstructure and rheological behavior of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state were investigated.The results show that the primary α-Mg phases are knapped by mechanical stirring and the Chinese script type reinforced Mg2Si phases exist in liquid phase and grain boundary.The analysis of apparent viscosity indicates that the apparent viscosity of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state increases with increasing the volume fraction of Mg2Si and solid fraction of primary α-Mg,but decreases with increasing the shearing rate and shearing time,and the apparent viscosity keeps stable when shearing time reaches 300 s.展开更多
The modification effect of neodymium (Nd) on Mg2Si in the hypereutectic Mg-3%Si (mass fraction) alloy was investigated by optical microcopy, scanning electron microscopy and X-ray diffraction. The results indicate...The modification effect of neodymium (Nd) on Mg2Si in the hypereutectic Mg-3%Si (mass fraction) alloy was investigated by optical microcopy, scanning electron microscopy and X-ray diffraction. The results indicate that the morphology of the primary Mg2Si transforms from coarse dendrite into fine polygon with increasing Nd content. The average size of the primary Mg2Si significantly decreases to about 10 ~ma with increasing Nd content up to 1.0%, and then becomes coarser again. The modification and refinement of the primary Mg2Si are mainly attributed to the poisoning effect. The NdMg2 phase in the primary Mg2Si transforms into NdSi and NdSi2 compounds as the Nd content exceeds 3.0%. Therefore, it is reasonable to conclude that the proper Nd (1.0%) addition can effectively modify and refine the primary Mg2Si.展开更多
A modification of Mg2Si in the hypereutectic Mg-4%Si alloy(mass fraction) with Sr was investigated.Two types of Mg2Si in the alloys were found:polygonal primary Mg2Si and Chinese script type eutectic Mg2Si.Adding A...A modification of Mg2Si in the hypereutectic Mg-4%Si alloy(mass fraction) with Sr was investigated.Two types of Mg2Si in the alloys were found:polygonal primary Mg2Si and Chinese script type eutectic Mg2Si.Adding Al-10% Sr master alloy to the Mg-4%Si alloy clearly reduced the average size of primary Mg2Si and changed the morphology of eutectic Mg2Si from Chinese script type to polyhedral or fine fibre shape.The refinement of primary Mg2Si is mainly attributed to the heterogeneous nucleation mechanism induced by the Sr-rich particles.The modification of eutectic Mg2Si results from the dissolved Sr,which alters the preferred growth manner of the eutectic.展开更多
Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the m...Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the mean grain size of primary MgESi crystals is refined from 150 to 20 μm by high intensity ultrasonic, and the morphologies of primary MgESi crystals are changed as well. Optical microscopy reveals that primary MgESi crystals without ultrasonic vibration exhibit coarse particles with cavities, in which eutectic structures grow. However, primary Mg2Si crystals with ultrasonic vibration appear fine grains without any cavity. Three-dimensional morphologies of primary Mg2Si without ultrasonic vibration display octahedron and tetrakaidecahedron with hopper-like hole in the crystals. After ultrasonic vibration, primary Mg2Si particles become solid crystals with rounded comers and edges.展开更多
Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structura...Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube.展开更多
The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were inv...The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were investigated. Structurally, the composites are divided into two zones: a reinforced zone with the high volume fraction of primary Si and Mg2Si particles and an unreinforced zone with no or a few particles. In the reinforced zone, the primary particles are evenly distributed, with the sizes of the primary Si particles 80-120 μm, and that of primary Mg2Si particles 20-50 μm. The properties test results show the reinforced zone has higher Rockwell hardness and better wear resistance than the unreinforced zone, due to the complementary reinforcement relationship between the primary Si and Mg2Si particles and their high volume fraction.展开更多
In order to modify in-situ synthesized Mg_2Si particles in Mg_2Si/Mg-4Si composite, the modif ication effect of calcium-magnesia phosphate fertilizer on primary Mg_2Si phase in Mg_2Si/Mg-4Si composite was investigated...In order to modify in-situ synthesized Mg_2Si particles in Mg_2Si/Mg-4Si composite, the modif ication effect of calcium-magnesia phosphate fertilizer on primary Mg_2Si phase in Mg_2Si/Mg-4Si composite was investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis. The results indicate that the morphology of the primary Mg_2Si phase apparently changes from coarse dendrites to f ine dispersive polygonal particles, and the mean size is decreased from 277 μm to 17 μm. With the addition of 4.0wt.% calcium-magnesia phosphate fertilizer as a modif ier, the ultimate tensile strength and elongation of the Mg_2Si/Mg-4Si composite are increased from 78.7 MPa and 2.1% to 105.2 MPa and 2.6%, as compared to those of the base composite, which is probably attributed to the formation of the phosphorous compound and the cluster of Ca compounds that acted as the heterogeneous nucleation substrates of the primary Mg_2Si particles, resulting in a ref ined distribution of these precipitates.展开更多
Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results ...Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results show that the volume fraction of primary Mg2Si particles increases linearly with raising the Mg content,but the average size of Mg2Si particles does not exhibit a corresponding change.When the Mg content is 3%,á1 0 0? directions have the fastest growth velocity,so that Mg2Si particles are likely to form octahedron shape.When gradually increasing the Mg content,the distributions of Mg and Si atoms on the solid-liquid interface become inhomogeneous,which results in the formation of irregular octahedron structures.Finally,when the Mg content is about 10%,the morphology of primary Mg2Si particles changes from the octahedron shape into various complex structures with a large size.展开更多
The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-scrip...The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-script shaped Mg2Si phase in the AZ61-0.7Si alloy.By adding 0.06wt.%-0.12wt.%Sr to AZ61-0.7Si alloy,the Mg2Si phase in the alloy can be changed from the initial coarse Chinese-script shape to fine granule and/or irregular polygonal shapes.Accordingly,the Sr-containing AZ61-0.7Si alloy exhibits higher tensile and creep properties than the AZ61-0.7Si alloy without Sr modification.The mechanism on modification and refinement of the Mg2Si phase in Sr-containing AZ61-0.7Si alloy is possibly related to the following two aspects:(1)adding Sr may form the Al4Sr phase which can serve as the heterogeneous nucleus for the Mg2Si particles and/or(2)adding Sr may lower the onset crystallizing temperature and increase the undercooling level.展开更多
The modifying effect of La addition on primary phase Mg2Si in Mg-5Si alloys was investigated. The results showed that a proper amount of La could effectively modify the primary phase Mg2Si, Based on the present experi...The modifying effect of La addition on primary phase Mg2Si in Mg-5Si alloys was investigated. The results showed that a proper amount of La could effectively modify the primary phase Mg2Si, Based on the present experiment, the optimal modification effect was obtained with an addition of about 0.5 wt.% La. The size of the primary phase MgzSi was considerably reduced to 25μm or less and the morphology was modified from a coarse dendritic shape to a polyhedral shape. However, when the addition of La increased to 0.8 wt.% or higher, the primary Mg2Si grew into a coarse dendritic morphology again. Moreover, it was found that some LaSi2 compounds were formed during solidification and the amount of the compounds appeared to increase gradually with increasing La content.展开更多
In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex sit...In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.展开更多
Mg films of various thicknesses were deposited on Si(111) substrates at room temperature by resistive thermal evaporation method, and then the Mg/Si samples were annealed at 40 ℃ for 4 h. The effects of Mg film thi...Mg films of various thicknesses were deposited on Si(111) substrates at room temperature by resistive thermal evaporation method, and then the Mg/Si samples were annealed at 40 ℃ for 4 h. The effects of Mg film thickness on the formation and structure of Mg2Si films were investigated. The results showed that the crystallization quality of Mg2Si films was strongly influenced by the thickness of Mg film. The XRD peak intensity of Mg2Si (220) gradually increased initially and then decreased with increasing Mg film thickness. The XRD peak intensity of Mg2Si (220) reached its maximum when the Mg film of 380 um was used. The thickness of the Mg2Si film annealed at 400℃ for 4 h was approximately 3 times of the Mg film.展开更多
The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and i...The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg17Al12 phase was refined and broken into some discontinuous island structures. However, some network Mg17Al12 phases still can be detected in Mg-12Al-0.7Si-0.09Sr alloy. Therefore, Sb performs better in modification and refinement of Mg17Al12 phase than does Sr. Small amounts of fine polygonal shaped Mg2Si phases were found in Mg-12AI-0.7Si-0.5Sb alloy, while the morphology of Mg2Si phases in Mg-12Al-0.7Si-0.09Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg2Si phase are more significant by adding 0.09wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 ℃.展开更多
In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnx (x=0.2, 0.4, 0.6, 0.8) solid solutions, microwave irradiation techniques were used in pr...In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnx (x=0.2, 0.4, 0.6, 0.8) solid solutions, microwave irradiation techniques were used in preparing them as thermoelectric materials. Structure and phase composition of the obtained materials were investigated by X-ray diffraction (XRD). The electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature from 300 to 750 K. It is found that Mg2Si1-xSnx solid solutions are well formed with excessive content of 5% (molar fraction) Mg from the stoichiometric MgESil.xSnx under microwave irradiation. A maximum dimensionless figure of merit, ZT, of about 0.26 is obtained for Mg2Si1-xSnx solid solutions at about 500 K for x=0.6.展开更多
The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of th...The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.展开更多
Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive c...Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained Mg2Si phase with fully relative density.展开更多
基金Project (21073162) supported by the National Natural Science Foundation of ChinaProject (2008) supported by the Scientific and Technological Projects of Ningxia, China+1 种基金Project (08JC1421600) supported by the Science and Technology Commission of Shanghai Municipality, ChinaProject (2008AZ2018) supported by the Science and Technology Bureau of Jiaxing City, China
文摘The electrochemical behaviors and coupling behaviors of the Mg2Si and Si phases with α(Al) were investigated, the corrosion morphologies of Al alloys containing Mg2Si and Si particles were observed, and the corrosion mechanism associated with them in Al-Mg-Si alloys was advanced. The results show that Si particle is always cathodic to the alloy base, Mg2Si is anodic to the alloy base and corrosion occurs on its surface at the beginning. However, during its corrosion process, the preferential dissolution of Mg and the enrichment of Si make Mg2Si transform to cathode from anode, leading to the anodic dissolution and corrosion of the alloy base at its adjacent periphery at a later stage. As the mole ratio of Mg to Si in an Al-Mg-Si alloy is less than 1.73, it contains Mg2Si and Si particles simultaneously in the grain boundary area, and corrosion initiates on the Mg2Si surface and the precipitate-free zone (PFZ) at the adjacent periphery of Si particle. As corrosion time is extended, Si particle leads to severe anodic dissolution and corrosion of the PFZ at its adjacent periphery, expedites the polarity transformation between Mg2Si and the PFZ and accelerates the corrosion of PFZ at the adjacent periphery of Mg2Si particle.
基金Project (BG2007030) supported by High-tech Research Program of Jiangsu Province, ChinaProject (07KJA43008) supported by the Natural Science Foundation of Jiangsu Province, ChinaProject (20070299004) supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The influence of solution treatment on the microstructure and properties of Mg2Si/AZ91D composites fabricated from Mg-SiO2 system via in-situ processing method was investigated.The results show that coarse Chinese script shape Mg2Si phases can be formed by adding SiO2 into AZ91D magnesium alloy with Si content up to 1.5% of the alloy melt.During solution treatment,the morphology and distribution of the coarse Chinese script shape Mg2Si phases are modified.Meanwhile,the β-Mg17Al12 phase is dissolved into the magnesium matrix.With increasing holding time,the coarse Mg2Si phases tend to dissolve,break and spheroidize.After solution treatment at 420 ℃ for 16 h,Mg2Si phases become the finest and relatively well-distributed phase.The tensile strength and elongation are increased by 14.9% and 38.9%,respectively.It is believed that the Mg2Si phases continuously dissolve and break,and finally the spheroidized Mg2Si particles are obtained due to the interface tension of Mg2Si/Mg interface.
基金Project(50765005) supported by the National Natural Science Foundation of Chinasupported by Key Laboratory of Ministry of Education for Conveyance and Equipment (East China Jiaotong University),China
文摘The microstructure and rheological behavior of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state were investigated.The results show that the primary α-Mg phases are knapped by mechanical stirring and the Chinese script type reinforced Mg2Si phases exist in liquid phase and grain boundary.The analysis of apparent viscosity indicates that the apparent viscosity of semi-solid Mg2Si/AM60 magnesium matrix composite at steady state increases with increasing the volume fraction of Mg2Si and solid fraction of primary α-Mg,but decreases with increasing the shearing rate and shearing time,and the apparent viscosity keeps stable when shearing time reaches 300 s.
基金Project(A0420110401)supported by the National Security Basic Research,China
文摘The modification effect of neodymium (Nd) on Mg2Si in the hypereutectic Mg-3%Si (mass fraction) alloy was investigated by optical microcopy, scanning electron microscopy and X-ray diffraction. The results indicate that the morphology of the primary Mg2Si transforms from coarse dendrite into fine polygon with increasing Nd content. The average size of the primary Mg2Si significantly decreases to about 10 ~ma with increasing Nd content up to 1.0%, and then becomes coarser again. The modification and refinement of the primary Mg2Si are mainly attributed to the poisoning effect. The NdMg2 phase in the primary Mg2Si transforms into NdSi and NdSi2 compounds as the Nd content exceeds 3.0%. Therefore, it is reasonable to conclude that the proper Nd (1.0%) addition can effectively modify and refine the primary Mg2Si.
基金Project(2011BAE22B00) supported by the National Key Technology R&D Program of ChinaProjects(ZR2010EQ021,ZR2010EL013) supported by the Natural Science Foundation of Shandong Province,China
文摘A modification of Mg2Si in the hypereutectic Mg-4%Si alloy(mass fraction) with Sr was investigated.Two types of Mg2Si in the alloys were found:polygonal primary Mg2Si and Chinese script type eutectic Mg2Si.Adding Al-10% Sr master alloy to the Mg-4%Si alloy clearly reduced the average size of primary Mg2Si and changed the morphology of eutectic Mg2Si from Chinese script type to polyhedral or fine fibre shape.The refinement of primary Mg2Si is mainly attributed to the heterogeneous nucleation mechanism induced by the Sr-rich particles.The modification of eutectic Mg2Si results from the dissolved Sr,which alters the preferred growth manner of the eutectic.
文摘Effects of ultrasonic on morphologies of primary Mg2Si crystals in in-situ Mg2Si/A1 composite were investigated by metallographic microscopy and field emission scanning electron microscopy. The results show that the mean grain size of primary MgESi crystals is refined from 150 to 20 μm by high intensity ultrasonic, and the morphologies of primary MgESi crystals are changed as well. Optical microscopy reveals that primary MgESi crystals without ultrasonic vibration exhibit coarse particles with cavities, in which eutectic structures grow. However, primary Mg2Si crystals with ultrasonic vibration appear fine grains without any cavity. Three-dimensional morphologies of primary Mg2Si without ultrasonic vibration display octahedron and tetrakaidecahedron with hopper-like hole in the crystals. After ultrasonic vibration, primary Mg2Si particles become solid crystals with rounded comers and edges.
基金Project(2008BB4177) supported by the Natural Science Foundation of Chongqing,China
文摘Two kinds of Al based functionally gradient composite tubes reinforced by primary Si particles alone and primary Si/in situ Mg2Si particles jointly were successfully prepared by centrifugal casting,and their structural and mechanical characters were compared.It is found that the composite reinforced with primary Si particles takes a characteristic of particles distribution both in the inner and outer layers.However,composite reinforced with primary Si/Mg2Si particles jointly takes a characteristic of particles distribution only in the inner layer and shows a sudden change of particles distribution across the section of inner and outer layers.The hardness and wear resistance of Al-19Si-5Mg tube in the inner layer are greatly higher than that in the other layers of Al-19Si-5Mg tube and Al-19Si tube.Theoretical analysis reveals that the existence of Mg2Si particles is the key factor to form this sudden change of gradient distribution of two kinds of particles.Because Mg2Si particles with a lower density have a higher centripetal moving velocity than primary Si particles,in a field of centrifugal force,they would collide with primary Si particles and then impel the later to move together forward to the inner layer of the tube.
基金Funded by the National Natural Science Foundation of China(No.51201140)the Fundamental Research Funds for the Central Universities(No.XDJK2010C007)
文摘The structure and mechanical properties of a new type of Al-based discontinuous gradient composites prepared by using the ternary AI-19Si-5Mg alloys as the raw material adopting the centrifugal casting method were investigated. Structurally, the composites are divided into two zones: a reinforced zone with the high volume fraction of primary Si and Mg2Si particles and an unreinforced zone with no or a few particles. In the reinforced zone, the primary particles are evenly distributed, with the sizes of the primary Si particles 80-120 μm, and that of primary Mg2Si particles 20-50 μm. The properties test results show the reinforced zone has higher Rockwell hardness and better wear resistance than the unreinforced zone, due to the complementary reinforcement relationship between the primary Si and Mg2Si particles and their high volume fraction.
基金financially supported by the Fundamental Research Funds for Central Universities(Grant No.:XDJK2015B001)
文摘In order to modify in-situ synthesized Mg_2Si particles in Mg_2Si/Mg-4Si composite, the modif ication effect of calcium-magnesia phosphate fertilizer on primary Mg_2Si phase in Mg_2Si/Mg-4Si composite was investigated by means of X-ray diffraction(XRD), optical microscopy(OM), scanning electron microscopy(SEM) and energy dispersive spectroscopy(EDS) analysis. The results indicate that the morphology of the primary Mg_2Si phase apparently changes from coarse dendrites to f ine dispersive polygonal particles, and the mean size is decreased from 277 μm to 17 μm. With the addition of 4.0wt.% calcium-magnesia phosphate fertilizer as a modif ier, the ultimate tensile strength and elongation of the Mg_2Si/Mg-4Si composite are increased from 78.7 MPa and 2.1% to 105.2 MPa and 2.6%, as compared to those of the base composite, which is probably attributed to the formation of the phosphorous compound and the cluster of Ca compounds that acted as the heterogeneous nucleation substrates of the primary Mg_2Si particles, resulting in a ref ined distribution of these precipitates.
基金Project(CDJZR12240056)supported by the Fundamental Research Funds for Central Universities,ChinaProject(cstc2013jcyj A50014)supported by the Foundational and Cutting-edge Research Plan of Chongqing,China
文摘Hypereutectic Al-Si alloy with variant Mg contents were fabricated by casting,and the effects of Mg content on the microstructure of primary Mg2Si particles in hypereutectic Al-Si alloys were investigated.The results show that the volume fraction of primary Mg2Si particles increases linearly with raising the Mg content,but the average size of Mg2Si particles does not exhibit a corresponding change.When the Mg content is 3%,á1 0 0? directions have the fastest growth velocity,so that Mg2Si particles are likely to form octahedron shape.When gradually increasing the Mg content,the distributions of Mg and Si atoms on the solid-liquid interface become inhomogeneous,which results in the formation of irregular octahedron structures.Finally,when the Mg content is about 10%,the morphology of primary Mg2Si particles changes from the octahedron shape into various complex structures with a large size.
基金supported by the National Natural Science Funds for Distinguished Young Scholar in China(No.50725413)the Major State Basic Research Development Program of China(973)(No.2007CB613704)+1 种基金the Natural Science Foundation Project of CQ CSTC(No.2007BB4400)Chongqing Science and Technology Commission in China(No.2006AA4012-9-6).
文摘The effect of Sr on modification and refinement of the Mg 2 Si phase in an AZ61-0.7Si magnesium alloy has been investigated and analyzed.The results indicate that Sr can effectively modify and refine the Chinese-script shaped Mg2Si phase in the AZ61-0.7Si alloy.By adding 0.06wt.%-0.12wt.%Sr to AZ61-0.7Si alloy,the Mg2Si phase in the alloy can be changed from the initial coarse Chinese-script shape to fine granule and/or irregular polygonal shapes.Accordingly,the Sr-containing AZ61-0.7Si alloy exhibits higher tensile and creep properties than the AZ61-0.7Si alloy without Sr modification.The mechanism on modification and refinement of the Mg2Si phase in Sr-containing AZ61-0.7Si alloy is possibly related to the following two aspects:(1)adding Sr may form the Al4Sr phase which can serve as the heterogeneous nucleus for the Mg2Si particles and/or(2)adding Sr may lower the onset crystallizing temperature and increase the undercooling level.
基金Project supported by the Science and Technology of Heilongjiang Province (GC05A209)the Science and Technology of Harbin (2005AA5CG046)
文摘The modifying effect of La addition on primary phase Mg2Si in Mg-5Si alloys was investigated. The results showed that a proper amount of La could effectively modify the primary phase Mg2Si, Based on the present experiment, the optimal modification effect was obtained with an addition of about 0.5 wt.% La. The size of the primary phase MgzSi was considerably reduced to 25μm or less and the morphology was modified from a coarse dendritic shape to a polyhedral shape. However, when the addition of La increased to 0.8 wt.% or higher, the primary Mg2Si grew into a coarse dendritic morphology again. Moreover, it was found that some LaSi2 compounds were formed during solidification and the amount of the compounds appeared to increase gradually with increasing La content.
基金supported by the National Natural Science Foundation of China(No.50671044)the Sci-tech Development Project of Jilin Province of China(No.20070506)
文摘In the present study, by adding SiC particles into AI-Si-Mg melt, Mg2Si and SiC particles hybrid reinforced AI matrix composites were fabricated through the Mg2Si in situ synthesis in melt combined with the SiC ex situ stir casting. The as-cast microstructure containing primary Mg2Si and SiC particles that distribute homogenously in AI matrix was successfully achieved. The effects of SiC particle addition on the microstructure of Mg2Si/AI composites were investigated by using scanning electron microscopy (SEM) and XRD. The results show that, with increasing the fraction of the SiC particles from 5wt.% to 10wt.%, the morphologies of the primary Mg2Si particulates in the prepared samples remain polygonal, but the size of the primary phase decreases slightly. However, when the SiC particle addition reaches 15wt.%, the morphologies of the primary Mg2Si particulates change partially from polygonal to quadrangular with a decrease in size from 50 pm to 30 μm. The size of primary AI dendrites decreases with increasing fraction of the SiC particles from 0wt.% to 15wt.%. The morphology of the eutectic Mg2Si phase changes from a fiber-form to a short fiber-form and/or a dot-like shape with increasing fraction of the SiC particles. Furthermore, no significant change in dendrite arm spacing (DAS) was observed in the presence of SiC particles.
基金Supported by the National Natural Science Foundation of China(No.61264004)the Special Fund for International Cooperation of the Ministry of Science and Technology of China(No.2008DFA52210)+5 种基金the Key Sci-Tech Research Project of Guizhou Province of China(No.20113015)the Special Fund for Construction of Sci-Tech Innovative Talents Team of Guizhou Province of China(No.20114002)the Fund for International Sci-Tech Cooperation of Guizhou Province of China(No.20127004)the National Natural Science Foundation of Guizhou Province of China(No.20112323)the Young Talents Training Project of Guizhou Province of China(No.2012152)the Introducing Talents Foundation for the Doctor of Guizhou University of China(No.2010032)
文摘Mg films of various thicknesses were deposited on Si(111) substrates at room temperature by resistive thermal evaporation method, and then the Mg/Si samples were annealed at 40 ℃ for 4 h. The effects of Mg film thickness on the formation and structure of Mg2Si films were investigated. The results showed that the crystallization quality of Mg2Si films was strongly influenced by the thickness of Mg film. The XRD peak intensity of Mg2Si (220) gradually increased initially and then decreased with increasing Mg film thickness. The XRD peak intensity of Mg2Si (220) reached its maximum when the Mg film of 380 um was used. The thickness of the Mg2Si film annealed at 400℃ for 4 h was approximately 3 times of the Mg film.
基金financially supported by the National Natural Science Foundation of China(Grant nos.:51301118,51404166)the Projects of International Cooperation in Shanxi province,China(Grant no.:2014081002)and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi province,China(Grant nos.:2013108,2014120)
文摘The effects of Sb and Sr on the modification and refinement of Mg17Al12 and Mg2Si phases in Mg- 12Al-0.7Si alloy were investigated and compared. The microstructure and mechanical properties of Mg-12Al0.7Si alloy and its modification mechanism by Sb and Sr were investigated using a scanning electron microscope (SEM), an energy dispersive spectrometer (EDS), X-ray diffraction (XRD) and differential thermal analysis (DTA). The results indicate that by adding 0.5wt.% Sb to the Mg-12Al-0.7Si alloy, the Mg17Al12 phase was refined and broken into some discontinuous island structures. However, some network Mg17Al12 phases still can be detected in Mg-12Al-0.7Si-0.09Sr alloy. Therefore, Sb performs better in modification and refinement of Mg17Al12 phase than does Sr. Small amounts of fine polygonal shaped Mg2Si phases were found in Mg-12AI-0.7Si-0.5Sb alloy, while the morphology of Mg2Si phases in Mg-12Al-0.7Si-0.09Sr alloy changed from the coarse Chinese script shapes to fine granule and irregular polygonal shapes, indicating that the effects of modification and refinement on Mg2Si phase are more significant by adding 0.09wt.% Sr than 0.5wt.% Sb. The ultimate tensile strengths of the Sb and Sr modified Mg-12Al-0.7Si alloys were considerably increased both at room temperature and at 200 ℃.
基金Project(2009BB4228) supported by the Natural Science Foundation of Chongqing City,ChinaProject(CK2010Z09) supported by the Research Foundation of Chongqing University of Science and Technology,China
文摘In order to reduce the oxidizing and volatilizing caused by Mg element in the traditional methods for synthesizing Mg2Sil-xSnx (x=0.2, 0.4, 0.6, 0.8) solid solutions, microwave irradiation techniques were used in preparing them as thermoelectric materials. Structure and phase composition of the obtained materials were investigated by X-ray diffraction (XRD). The electrical conductivity, Seebeck coefficient and thermal conductivity were measured as a function of temperature from 300 to 750 K. It is found that Mg2Si1-xSnx solid solutions are well formed with excessive content of 5% (molar fraction) Mg from the stoichiometric MgESil.xSnx under microwave irradiation. A maximum dimensionless figure of merit, ZT, of about 0.26 is obtained for Mg2Si1-xSnx solid solutions at about 500 K for x=0.6.
文摘The Mg_(2)Si-matrix thermoelectric material was synthesized by low temperature solid-state reaction.This paper studies the effects of holding time and reaction temperature on the particle size and the properties of the material,and also studies effects of doping elemental Sb,Te and their doping seqence on the properties of the material.The result shows that excessively high temperature and elongated holding time of solid-state reaction are harmful,there is a range of particle size to ensure optimum properties and the doping sequence of Sb or Te without influencing the properties.
基金Funded by the National Basic Research Program of China (2007CB607501)
文摘Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained Mg2Si phase with fully relative density.