The marine–continental transitional shale (MCTS) reservoirs of the Longtan Formation (LTF) are widely distributed in the Sichuan Basin. However, the LTF shale exhibits considerable variations in mineral composition a...The marine–continental transitional shale (MCTS) reservoirs of the Longtan Formation (LTF) are widely distributed in the Sichuan Basin. However, the LTF shale exhibits considerable variations in mineral composition and pore characteristics, which makes identifying the 'sweet spot'a challenging task. To address this issue, 10 samples from four typical shale gas wells in the LTF in the southern Sichuan Basin were selected and analyzed for total organic carbon (TOC) content, whole-rock composition using X-ray diffraction (XRD), low-pressure gas adsorption, and high-pressure mercury intrusion. The lithofacies distribution and pore structure of the MCTS were studied to determine the pore structural characteristics and the primary factors influencing pore formation in different types of shale lithofacies in the LTF. The lithofacies of the LTF shale in the study area can be classified into three categories: siliceous clay shale, clay shale and mixed shale. Mineral content has a significant impact on the pore characteristics, while TOC content has a minor effect on the pore volume and specific surface area of micropores and mesopores. It can be inferred that the mesopores in the MCTS are mainly related to clay mineral pores, and mineral dissolution and TOC content are not the primary factors contributing to pore formation.展开更多
基金supported by the National Natural Science Foundation of China(NNSFC)(Grant No.42272184)2022 Research Program of PetroChina Southwest Oil and Gas Field Company(2022JS-1809).
文摘The marine–continental transitional shale (MCTS) reservoirs of the Longtan Formation (LTF) are widely distributed in the Sichuan Basin. However, the LTF shale exhibits considerable variations in mineral composition and pore characteristics, which makes identifying the 'sweet spot'a challenging task. To address this issue, 10 samples from four typical shale gas wells in the LTF in the southern Sichuan Basin were selected and analyzed for total organic carbon (TOC) content, whole-rock composition using X-ray diffraction (XRD), low-pressure gas adsorption, and high-pressure mercury intrusion. The lithofacies distribution and pore structure of the MCTS were studied to determine the pore structural characteristics and the primary factors influencing pore formation in different types of shale lithofacies in the LTF. The lithofacies of the LTF shale in the study area can be classified into three categories: siliceous clay shale, clay shale and mixed shale. Mineral content has a significant impact on the pore characteristics, while TOC content has a minor effect on the pore volume and specific surface area of micropores and mesopores. It can be inferred that the mesopores in the MCTS are mainly related to clay mineral pores, and mineral dissolution and TOC content are not the primary factors contributing to pore formation.