期刊文献+
共找到3,091篇文章
< 1 2 155 >
每页显示 20 50 100
Ablation behaviour and mechanical performance of ZrB_(2)-ZrC-SiC modified carbon/carbon composites prepared by vacuum infiltration combined with reactive melt infiltration
1
作者 ZHANG Jia-ping SU Xiao-xuan +2 位作者 LI Xin-gang WANG Run-ning FU Qian-gang 《新型炭材料(中英文)》 SCIE EI CAS CSCD 北大核心 2024年第4期633-644,共12页
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona... The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation. 展开更多
关键词 c/c composites ZrB_(2)-Zrc-Sic Vacuum filtration Reactive melt infiltration Ablation.
下载PDF
Effect of Heat Treatment on Microstructure and Mechanical Properties of Multiscale SiC_p Hybrid Reinforced 6061 Aluminum Matrix Composites
2
作者 吴健铭 许晓静 +3 位作者 ZHANG Xu LUO Yuntian LI Shuaidi HUANG Lin 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第1期174-181,共8页
The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp... The performance of solid solution aging treatment on aluminum matrix composites prepared by powder metallurgy and reinforced with 6061 aluminum alloy powder as matrix;meanwhile, nano silicon carbide particles(nm Si Cp), submicron silicon carbide particles(1 μm Si Cp) and Ti particles were studied. The Al/Si Cp composite powder was prepared by high-energy ball milling, and then cold-pressed, sintered, hotextruded, and then heat-treated with different solution temperatures and aging times for the extruded composites. Optical microscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy(EDS), X-ray diffractometer(XRD) and extrusion testing were used to analyze and test the microstructure and mechanical properties of aluminum matrix composites. The results show that after the multi-stage solid solution at 530 ℃×2 h+535 ℃×2 h+540 ℃×2 h, the particles are mainly equiaxed grains and uniformly distributed. There is no reinforcement agglomeration, and the surface is dense and the insoluble phase is basically dissolved. In the matrix, the strengthening effect is good, and the hardness and compressive strength are 179.43 HV and 680.42 MPa, respectively. Under this solution process, when the aluminum matrix composites are aged at 170 ℃ for 10 h, the hardness and compressive strength can reach their peaks and increase to 195.82 HV and 721.48 MPa, respectively. 展开更多
关键词 aluminum matrix composites Si c particles multiscale hybrid enhancement heat treatment mechanical properties
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
3
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D c/Sic composites Finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
Ablation Processes for HfC-Coated 2.5D Needle-Punched Composites Used for Aerospace Engines Under Hypersonic Flight Conditions
4
作者 ZHANG Ziyi SHI Zhenyu +2 位作者 NI Jing WANG Jilai ZHANG Chengpeng 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2024年第5期645-655,共11页
The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo abla... The working environment of aerospace engines is extremely harsh with temperature exceeding 1700℃and accompanied by thermal coupling effects.In this condition,the materials employed in hypersonic aircraft undergo ablation issues,which can cause catastrophic accidents.Due to the excellent high-temperature stability and ablation resistance,HfC exhibits outstanding thermal expansion coefficient matching that of C/SiC composites.2.5D needle-punched C/SiC composites coated with HfC are prepared using a plasma spraying process,and a high-enthalpy arc-heated wind tunnel is employed to simulate the re-entry environment of aircraft at 8 Mach and an altitude of 32 km.The plasma-sprayed HfC-coated 2.5D needle-punched C/SiC composites are subjected to long-term dynamic testing,and their properties are investigated.Specifically,after the thermal assessment ablation experiment,the composite retains its overall structure and profile;the total mass ablation rate is 0.07445 g/s,the average linear ablation rate in the thickness direction is-0.0675μm/s,and the average linear ablation rate in the length direction is 13.907μm/s.Results verify that plasma-sprayed HfC coating exhibits excellent anti-oxidation and ablation resistance properties.Besides,the microstructure and ablation mechanism of the C/SiC composites are studied.It is believed that this work will offer guideline for the development of thermal protection materials and the assessment of structural thermal performance. 展开更多
关键词 2.5D needle-punched c/Sic composites ablation mechanism arc-heated wind tunnel experiment high enthalpy flow
下载PDF
Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance 被引量:2
5
作者 Lixue Gai Yahui Wang +5 位作者 Pan Wan Shuping Yu Yongzheng Chen Xijiang Han Ping Xu Yunchen Du 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期128-146,共19页
Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable M... Microwave absorbing materials(MAMs)characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications.Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions,while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals.Herein,we have successfully implemented compositional and structural engineering to fabricate hollow Si C/C microspheres with controllable composition.The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites.The formation of hollow structure not only favors lightweight feature,but also generates considerable contribution to microwave attenuation capacity.With the synergistic effect of composition and structure,the optimized SiC/C composite exhibits excellent performance,whose the strongest reflection loss intensity and broadest effective absorption reach-60.8 dB and 5.1 GHz,respectively,and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies.In addition,the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications. 展开更多
关键词 Sic/c composites compositional engineering Hollow engineering Microwave absorption Environmental tolerance
下载PDF
Experimental Investigation of the Anisotropic Thermal Conductivity of C/SiC Composite Thin Slab
6
作者 毋克凡 张虎 唐桂华 《Chinese Physics Letters》 SCIE EI CAS CSCD 2024年第3期48-60,共13页
Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly ... Fiber-reinforced composites possess anisotropic mechanical and heat transfer properties due to their anisotropic fibers and structure distribution.In C/Si C composites,the out-of-plane thermal conductivity has mainly been studied,whereas the in-plane thermal conductivity has received less attention due to their limited thickness. 展开更多
关键词 composites c/Si ANISOTROPIc
下载PDF
Microwave absorption properties of Ni/C@SiC composites prepared by precursor impregnation and pyrolysis processes
7
作者 Xinli Ye Junxiong Zhang +4 位作者 Zhaofeng Chen Junfeng Xiang Yun Jiang Faqin Xie Xiaomin Ma 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第3期94-102,共9页
In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The micr... In the present study,the unique three-dimensional graphene coated nickel(Ni/C)foam reinforced silicon carbide(Ni/C@SiC)composites were first obtained via the precursor impregnation and pyrolysis(PIP)processes.The microstructure images indicated that the SiC fillers were successfully prepared in the skeleton pores of the Ni/C foam.The influence of the PIP cycles on the microwave absorption performances was researched,and the results indicated that after the primary PIP process,Ni/C@SiC-I possessed the optimal microwave absorbing performance with a minimum reflection loss(RL)of-25.87 d B at 5.28 GHz and 5.00 mm.Besides,the RL values could be below-10.00 dB from 5.88 GHz to 7.74 GHz when the corresponding matching thickness was 3.85 mm.However,the microwave absorption properties of Ni/C@SiC-II and Ni/C@SiC-Ⅲwere tremendously degraded as the PIP times increased.At last,the electromagnetic parameter,dielectric loss,attenuation constant as well as impedance matching coefficient were further investigated to analyze the absorbing mechanism,which opened a new path for the certain scientific evaluation of the absorbing materials and had extremely important to the defence technology. 展开更多
关键词 composites Ni/c ABSORPTION
下载PDF
Anti-oxidation properties of ZrB_2 modified silicon-based multilayer coating for carbon/carbon composites at high temperatures 被引量:7
8
作者 李贺军 姚西媛 +2 位作者 张雨雷 姚栋嘉 王少龙 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2094-2099,共6页
To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack ceme... To improve the anti-oxidation ability of silicon-based coating for carbon/carbon (C/C) composites at high temperatures, a ZrB2 modified silicon-based multilayer oxidation protective coating was prepared by pack cementation. The phase composition, microstructure and oxidation resistance at 1773, 1873 and 1953 K in air were investigated. The prepared coating exhibits dense structure and good oxidation protective ability. Due to the formation of stable ZrSiO4-SiO2 compound, the coating can effectively protect C/C composites from oxidation at 1773 K for more than 550 h. The anti-oxidation performance decreases with the increase of oxidation temperature. The mass loss of coated sample is 2.44% after oxidation at 1953 K for 50 h, which is attributed to the decomposition of ZrSiO4 and the volatilization of SiO2 protection layer. 展开更多
关键词 c/c composites cOATING ZRB2 anti-oxidation properties
下载PDF
C/SiC/MoSi_2-SiC-Si multilayer coating for oxidation protection of carbon/carbon composites 被引量:5
9
作者 张雨雷 李贺军 +2 位作者 胡志雄 李克智 张磊磊 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2118-2122,共5页
C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the... C/SiC/MoSi2-SiC-Si oxidation protective multilayer coating for carbon/carbon (C/C) composites was prepared by pack cementation and slurry method. The microstructure, element distribution and phase composition of the as-received coating were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD). The results show that the multilayer coating was composed of MoSi2, SiC and Si. It could effectively protect C/C composites against oxidation for 200 h with the mass loss of 3.25% at 1873 K in static air. The mass loss of the coated C/C composites results from the volatilization of SiO2 and the formation of cracks and bubble holes in the coating. 展开更多
关键词 c/c composites c/SIc MOSI2 Sic MULTILAYER cOATING OXIDATION
下载PDF
Bending properties and fracture mechanism of C/C composites with high density preform 被引量:9
10
作者 张明瑜 苏哲安 +1 位作者 李建立 黄启忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第8期1795-1800,共6页
C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high... C/C composites with banded structure pyrocarbon were fabricated by fast chemical vapor infiltration(CVI),with C3H6 as carbon source,N2 as carrier gas,and three-dimensional(3D) 12K PAN-based carbon fabric with high density of 0.94 g/cm3 as preform.Experimental results indicated that the fracture characteristics of C/C composites were closely related to the frequency of high-temperature treatment(HTT) at the break of CVI process.According to the load?displacement curves,C/C composites showed a pseudoplastic fracture after twice of HTT.After three times of HTT,load?displacement curves tended to be stable with a decreasing bending strength at 177.5 MPa.Delamination failure and intrastratal fiber fracture were observed at the cross-section of C/C composites by scanning electronic microscope.Because the content of pyrocarbon and fibers has a different distribution in layers,the C/C composites show different fracture characteristics at various regions,which leads to good toughness and bending strength. 展开更多
关键词 c/c composites chemical vapor infiltration(cVI) high density preform bending properties fracture mechanism
下载PDF
Effect of ZrC-SiC content on microstructure and ablation properties of C/C composites 被引量:3
11
作者 李军 杨鑫 +5 位作者 苏哲安 薛亮 钟平 李帅鹏 黄启忠 刘红卫 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2653-2664,共12页
C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/... C/C-ZrC-SiC composites with different ZrC-SiC contents were fabricated by precursor infiltration and pyrolysis. The effect of ceramic content on the microstructure and ablation resistance was investigated. Both the C/C-SiC and C/C-ZrC-SiC composites exhibited good ablation resistance under the plasma flame above 2300℃. Withtheincreaseof ZrC content, a continuous oxide layer and a solid Zr-Si-O mesophase were formed during the ablation. And the structure of the formed oxides layer closely linked with the contents of ZrC-SiC ceramics. The solid ZrO2-ZrC and Zr-Si-O mesophase could increase the viscosity of SiO2 moderately and improve the anti-scouring ability. The continuous SiO2-ZrO2-ZrC-SiC layer would serve as a thermal and oxygen barrier for preventing the substratefrom further ablation. The C/C-ZrC-SiC composites with 27.2%ZrC and 7.56%SiC shows superior ablation resistance, and the mass and linear ablation rates are-3.51 mg/s and-1.88 μm/s, respectively. 展开更多
关键词 ZRc SIc c/c composites ZRc SIc ablation precursorinfiltration and pyrolysis
下载PDF
Pyrolysis mechanism of ZrC precursor and fabrication of C/C-ZrC composites by precursor infiltration and pyrolysis 被引量:5
12
作者 刘春轩 陈建勋 +3 位作者 苏哲安 杨鑫 曹柳絮 黄启忠 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第6期1779-1784,共6页
C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase com... C/C-ZrC composites were prepared by precursor infiltration and pyrolysis using the organic zirconium as precursor.The conversion mechanisms of the precursors such as the thermal behavior,structural evolution,phase composition,microstructure,composition of the precursors and products were analyzed by thermal gravimetric analyzer,Fourier transform infrared spectrometer,X-ray diffraction and scanning electron microscope.The results indicate that the ZrC precursor transforms to inorganic ZrO2 from room temperature to 1200 ℃,then reduces to ZrC at 1600 ℃ through the carbothermal reduction reaction.The microstructure of the C/C-ZrC composites was also investigated.The composites exhibit an interesting structure,a coating composed of ZrC ceramic covers the exterior of the composite,and the ZrC ceramic is embedded in the pores of the matrix inside the composite. 展开更多
关键词 Zrc precursor pyrolysis mechanism precursor infiltration and pyrolysis c/c-Zrc composites
下载PDF
Flexural destructive process of unidirectional carbon/carbon composites reinforced with in situ grown carbon nanofibers 被引量:2
13
作者 卢雪峰 肖鹏 +1 位作者 徐先锋 陈洁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3134-3141,共8页
Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of... Unidirectional carbon/carbon(C/C) composites modified with in situ grown carbon nanofibers(CNFs) were prepared by catalysis chemical vapor deposition. The effect of in situ grown CNFs on the flexural properties of the C/C composites was investigated by detailed analyses of destructive process. The results show that there is a sharp increase in the flexural load-displacement curve in the axial direction of the CNF-C/C composites, followed by a serrated yielding phenomenon similar to the plastic materials. The failure mode of the C/C composites modified with in situ grown CNFs is changed from the pull-out of single fiber to the breaking of fiber bundles. The existence of interfacial layer composed by middle-textured pyrocarbon, CNFs and high-textured pyrocarbon can block the crack propagation and change the propagation direction of the main crack, which leads to the higher flexural strength and modulus of C/C composites. 展开更多
关键词 carbon nanofiber c/c composites flexural destruction crack propagation
下载PDF
Oxidation behavior of C/C composites with SiC/ZrSiO_4-SiO_2 coating 被引量:3
14
作者 李杨 肖鹏 +2 位作者 李专 罗威 周伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期397-405,共9页
A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock r... A SiC/ZrSiO4?SiO2 (SZS) coating was successfully fabricated on the carbon/carbon (C/C) composites by pack cementation, slurry painting and sintering to improve the anti-oxidation property and thermal shock resistance. The anti-oxidation properties under different oxygen partial pressures (OPP) and thermal shock resistance of the SZS coating were investigated. The results show that the SZS coated sample under low OPP, corresponding to the ambient air, during isothermal oxidation was 0.54% in mass gain after 111 h oxidation at 1500 ° C and less than 0.03% in mass loss after 50 h oxidation in high OPP, corresponding to the air flow rate of 36 L/h. Additionally, the residual compressive strengths (RCS) of the SZS coated samples after oxidation for 50 h in high OPP and 80 h in low OPP remain about 70% and 72.5% of those of original C/C samples, respectively. Moreover, the mass loss of SZS coated samples subjected to the thermal cycle from 1500 ° C in high OPP to boiling water for 30 times was merely 1.61%. 展开更多
关键词 c/c composite Sic/ZrSiO4-SiO2 coating oxygen partial pressure ANTI-OXIDATION thermal shock residual compressive strength
下载PDF
Effect of stress level on fatigue behavior of 2D C/C composites 被引量:2
15
作者 杨茜 李贺军 +1 位作者 虞跨海 张守阳 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2135-2140,共6页
Laminated carbon fiber clothes were infiltrated to prepare carbon fiber reinforced pyrolytic carbon (C/C) using isothermal chemical vapor infiltration (CVI). The bending fatigue behavior of the infiltrated C/C com... Laminated carbon fiber clothes were infiltrated to prepare carbon fiber reinforced pyrolytic carbon (C/C) using isothermal chemical vapor infiltration (CVI). The bending fatigue behavior of the infiltrated C/C composites was tested under two different stress levels. The residual strength and modulus of all fatigued samples were tested to investigate the effect of maximum stress level on fatigue behavior of C/C composites. The microstructure and damage mechanism were also investigated. The results showed that the residual strength and modulus of fatigued samples were improved. High stress level is more effective to increase the modulus. And for the increase of flexural strength, high stress level is more effective only in low cycles. The fatigue loading weakens the bonding between the matrix and fiber, and then affects the damage propagation pathway, and increases the energy consumption. So the properties of C/C composites are improved. 展开更多
关键词 c/c composites fatigue behavior stress level residual strength
下载PDF
Fabrication of Y_2Si_2O_7 coating and its oxidation protection for C/SiC composites 被引量:3
16
作者 马青松 蔡利辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2017年第2期390-396,共7页
Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the an... Yttrium silicate (Y2Si2O7) coating was fabricated on C/SiC composites through dip-coating with silicone resin + Y2O3 powder slurry as raw materials. The synthesis, microstructure and oxidation resistance and the anti-oxidation mechanism of Y2Si2O7 coating were investigated. Y2Si2O7 can be synthesized by the pyrolysis of Y2O3 powder filled silicone resin at mass ratio of 54.2:45.8 and 800 °C in air and then heat treated at 1400 °C under Ar. The as-fabricated coating shows high density and favorable bonding to C/SiC composites. After oxidation in air at 1400, 1500 and 1600 °C for 30 min, the coating-containing composites possess 130%-140% of original flexural strength. The desirable thermal stability and the further densification of coating during oxidation are responsible for the excellent oxidation resistance. In addition, the formation of eutectic Y-Si-Al-O glassy phase between Y2Si2O7 and Al2O3 sample bracket at 1500 °C is discovered. 展开更多
关键词 c/Sic composites yttrium silicate cOATING oxidation resistance
下载PDF
Fracture mechanism of 2D-C/C composites with pure smooth laminar pyrocarbon matrix under flexural loading
17
作者 曹伟锋 李贺军 +3 位作者 郭领军 张守阳 李克智 邓海亮 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2141-2146,共6页
Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PL... Using natural gas as carbon source, 2D needle felt as preform, 2D-C/C composites were prepared by thermal gradient chemical vapor infiltration. Their microstructures were observed under polarized light microscope (PLM) and scanning electron microscope (SEM), and the flexural behaviors before and after heat-treatment were studied with a universal mechanical testing machine. The fracture mechanism of the composites was discussed in detail. The results show that, carbon matrix exhibits pure smooth laminar (SL) characteristic including numerous wrinkled layered structures and some inter-laminar micro-cracks. With the decreasing density, the strength of the composites decreases and the toughness increases slightly; after 2500 °C heat-treatment, the inter-laminar micro-cracks in matrix increase, the strength decreases, and the toughness obviously increases. The fracture mode of the composites changes from brittle to pseudo-plastic characteristic due to more crack deflections in SL matrix. 展开更多
关键词 c/c composites PYROcARBON FRAcTURE flexural behavior
下载PDF
基于探测器响应机理的碳/碳构件CT图像环状伪影的校正方法
18
作者 金珂 周星明 +4 位作者 孙跃文 徐林 袁生平 卢鹉 曾天辰 《原子能科学技术》 EI CAS CSCD 北大核心 2024年第4期929-936,共8页
在碳/碳复合材料的计算机断层扫描(CT)中,由于探测器单元的响应非线性及不一致性导致重建图像出现严重的环状伪影,干扰图像中缺陷的检出,影响检测系统对被检构件的质量评价。结合碳/碳复合材料组分单一且密度均匀的特点,提出了一种基于... 在碳/碳复合材料的计算机断层扫描(CT)中,由于探测器单元的响应非线性及不一致性导致重建图像出现严重的环状伪影,干扰图像中缺陷的检出,影响检测系统对被检构件的质量评价。结合碳/碳复合材料组分单一且密度均匀的特点,提出了一种基于探测器响应机理的CT图像环状伪影的校正方法,利用采集的劣化投影数据做预重建,对重建结果做阈值分割以获得被检测物体的三维模型。结合已知的材料和密度信息,对被检物体进行重投影,得到投影数据的理论值与实测值之间的映射关系,用于探测器响应校正以优化检测图像。与传统低通滤波的环状伪影校正方法相比,该方法考虑了环状伪影的物理成因并充分利用了检测对象的先验信息。研究结果表明,该校正方法在保留图像细节和纹理的同时,能够有效减少环状伪影,提升图像质量,消除伪影对于图形中缺陷识别的干扰,为提升检测系统对碳/碳复合材料构件缺陷的检出能力提供理论依据。 展开更多
关键词 碳/碳复合材料 cT检测 环状伪影 探测器响应
下载PDF
C/Sn复合薄膜的磁控溅射制备及其作为锂离子电池负极材料的电化学性能 被引量:1
19
作者 闫共芹 时孟杰 +2 位作者 王欣琳 蓝春波 武桐 《微纳电子技术》 CAS 2024年第2期78-86,共9页
采用磁控溅射的方法在铜箔上制备了C/Sn复合薄膜并将其作为锂离子电池负极材料,研究了C/Sn复合薄膜中Sn质量分数对其电化学性能的影响。研究发现,随着复合薄膜中Sn质量分数的增加,其首圈放电比容量增加,在一定范围内增加Sn质量分数,首... 采用磁控溅射的方法在铜箔上制备了C/Sn复合薄膜并将其作为锂离子电池负极材料,研究了C/Sn复合薄膜中Sn质量分数对其电化学性能的影响。研究发现,随着复合薄膜中Sn质量分数的增加,其首圈放电比容量增加,在一定范围内增加Sn质量分数,首圈库仑效率增加,但当Sn质量分数过多时其库仑效率降低。Sn质量分数分别为89.20%、91.61%、93.85%、95.81%的四种复合薄膜,在电流密度为500 mA/g时的首圈放电比容量分别为1195.4、1372.97、1574.86、1642.30 mA·h/g,首圈库仑效率分别为86.84%、87.88%、94.06%、80.66%。循环200圈后,四种复合薄膜的比容量衰减率分别为0.70%、6.13%、11.32%、18.88%。研究结果表明,当复合薄膜中Sn质量分数为89.20%时,其具有最优的倍率性能和循环稳定性能,随着复合薄膜中Sn质量分数的增加,其倍率性能及循环稳定性变差。 展开更多
关键词 锂离子电池 负极材料 磁控溅射 c/Sn复合薄膜 电化学性能 循环稳定性
下载PDF
氮含量对Ti-B-C-N薄膜微观结构和性能的影响
20
作者 陈向阳 张瑾 +1 位作者 马胜利 胡海霞 《机械工程材料》 CAS CSCD 北大核心 2024年第5期62-66,共5页
采用反应磁控溅射法在高速钢基体上制备氮原子分数分别为10.8%,15.6%,28.1%,36.4%的Ti-B-C-N薄膜,研究了氮含量对薄膜微观结构、硬度和摩擦磨损性能的影响。结果表明:Ti-B-C-N薄膜均由α-Fe和Ti(C,N)纳米晶组成,具有Ti(C,N)纳米晶镶嵌... 采用反应磁控溅射法在高速钢基体上制备氮原子分数分别为10.8%,15.6%,28.1%,36.4%的Ti-B-C-N薄膜,研究了氮含量对薄膜微观结构、硬度和摩擦磨损性能的影响。结果表明:Ti-B-C-N薄膜均由α-Fe和Ti(C,N)纳米晶组成,具有Ti(C,N)纳米晶镶嵌在非晶基体相中的纳米复合结构;随着氮含量增加,非晶相含量增加,Ti(C,N)纳米晶的含量和晶粒尺寸减小;随着氮含量增加,Ti-B-C-N薄膜的显微硬度增大,摩擦因数和磨损率均减小,表面磨痕变浅,磨损机制由剥落和微观犁削转变为微观抛光。 展开更多
关键词 反应磁控溅射 Ti-B-c-N薄膜 纳米复合结构 硬度 摩擦磨损性能
下载PDF
上一页 1 2 155 下一页 到第
使用帮助 返回顶部