A semi-empirical detector response function(DRF)model is established to fit characteristic X-ray peaks recorded in Si-PIN spectra,which is mainly composed of four components:a truncated step function,a Gaussian-shaped...A semi-empirical detector response function(DRF)model is established to fit characteristic X-ray peaks recorded in Si-PIN spectra,which is mainly composed of four components:a truncated step function,a Gaussian-shaped full-energy peak,a Gaussian-shaped Si escape peak and an exponential tail.A simple but useful statistical distribution-based analytic method(SDA)is proposed to achieve accurate values of standard deviation for characteristic X-ray peaks.And the values of the model parameters except for the standard deviation are obtained by weighted least-squares fitting of the pulse-height spectra from a number of pure-element samples.A Monte Carlo model is also established to simulate the X-ray measurement setup.The simulated flux spectrum can be transformed by Si-PIN detector response function to real pulse height spectrum as studied in this work.Finally,the fitting result for a copper alloy sample was compared with experimental spectra,and the validity of the present method was demonstrated.展开更多
基金Supported by National Natural Science Foundation of China(Nos.40974065 and 41025015)Scientific and Technological Innovative Team in Sichuan Province(No.2011JTD0013)"863"Program of China(No.2012AA063501)
文摘A semi-empirical detector response function(DRF)model is established to fit characteristic X-ray peaks recorded in Si-PIN spectra,which is mainly composed of four components:a truncated step function,a Gaussian-shaped full-energy peak,a Gaussian-shaped Si escape peak and an exponential tail.A simple but useful statistical distribution-based analytic method(SDA)is proposed to achieve accurate values of standard deviation for characteristic X-ray peaks.And the values of the model parameters except for the standard deviation are obtained by weighted least-squares fitting of the pulse-height spectra from a number of pure-element samples.A Monte Carlo model is also established to simulate the X-ray measurement setup.The simulated flux spectrum can be transformed by Si-PIN detector response function to real pulse height spectrum as studied in this work.Finally,the fitting result for a copper alloy sample was compared with experimental spectra,and the validity of the present method was demonstrated.