该文以近红外光谱分析技术快速测定菠萝啤中果汁含量为目的,采用了后向间隔偏最小二乘(backward interval partial least squares,Bi-PLS)、组合间隔偏最小二乘(synergy interval partial least squares,Si-PLS)以及遗传算法(genetic al...该文以近红外光谱分析技术快速测定菠萝啤中果汁含量为目的,采用了后向间隔偏最小二乘(backward interval partial least squares,Bi-PLS)、组合间隔偏最小二乘(synergy interval partial least squares,Si-PLS)以及遗传算法(genetic algorithm,GA)提取特征波长以提高模型性能。研究结果表明,基于Si-PLS提取的特征波长结合偏最小二乘法(partial least squares,PLS)建立的定量分析模型效果最好,从原始光谱范围4000~10000 cm^-1内筛选出3个特征光谱区间,分别为(4484~4960,5600~6051,7844~8080)cm^-1,共94个特征变量,比原始1501个波长变量减少了93.7%,验证集的均方根误差和决定系数分别为0.18%、0.89,范围误差比为3.17。实验结果表明,近红外光谱分析技术用于测定果味啤中的果汁含量是可行的,这为快速高效测定菠萝啤果汁含量提供了一种方法依据。展开更多
文摘该文以近红外光谱分析技术快速测定菠萝啤中果汁含量为目的,采用了后向间隔偏最小二乘(backward interval partial least squares,Bi-PLS)、组合间隔偏最小二乘(synergy interval partial least squares,Si-PLS)以及遗传算法(genetic algorithm,GA)提取特征波长以提高模型性能。研究结果表明,基于Si-PLS提取的特征波长结合偏最小二乘法(partial least squares,PLS)建立的定量分析模型效果最好,从原始光谱范围4000~10000 cm^-1内筛选出3个特征光谱区间,分别为(4484~4960,5600~6051,7844~8080)cm^-1,共94个特征变量,比原始1501个波长变量减少了93.7%,验证集的均方根误差和决定系数分别为0.18%、0.89,范围误差比为3.17。实验结果表明,近红外光谱分析技术用于测定果味啤中的果汁含量是可行的,这为快速高效测定菠萝啤果汁含量提供了一种方法依据。