Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors(DMS).Due to the not well understood magnetic mechanism and the interplay between...Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors(DMS).Due to the not well understood magnetic mechanism and the interplay between different magnetic mechanisms,no efficient and universal tuning strategy is proposed at present.Here,the magnetic interactions and formation energies of isovalent-doped(Mn) and aliovalent(Cr)-doped LiZnAs are studied based on density functional theory(DFT).It is found that the dopant–dopant distance-dependent magnetic interaction is highly sensitive to the carrier concentration and carrier type and can only be explained by the interplay between two magnetic mechanisms,i.e.,superexchange and Zener’s p–d exchange model.Thus,the magnetic behavior and clustering of magnetic dopant can be tuned by the interplay between two magnetic mechanisms.The insensitivity of the tuning effect to U parameter suggests that our strategy could be universal to other DMS.展开更多
β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent toleranc...β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent tolerance to high temperature and radiation.Compared to the single crystals of other semiconductors,high-quality and large-size β-Ga_(2)O_(3) single crystals can be grown with low-cost melting methods,making them highly competitive.In this review,the growth process,defects,and dopants ofβ-Ga_(2)O_(3) are primarily discussed.Firstly,the growth process(e.g.,decomposition,crucible corrosion,spiral growth,and development)ofβ-Ga_(2)O_(3) single crystals are summarized and compared in detail.Then,the defects of β-Ga_(2)O_(3) single crystals and the influence of defects on Schottky barrier diode(SBD)devices are emphatically discussed.Besides,the influences of impurities and intrinsic defects on the electronic and optical properties ofβ-Ga_(2)O_(3) are also briefly discussed.Concluding this comprehensive analysis,the article offers a concise summary of the current state,challenges and prospects ofβ-Ga_(2)O_(3) single crystals.展开更多
As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promisi...As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.展开更多
Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the...Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the study,the dopant strategy is utilized to construct nitrogen/sulfur-doped non-graphitized carbon(N-NGC or S-NGC)shell decorated on three-dimensional graphene foam(GF)as a self-support electrode.The highly disordered microstructures of heteroatom doped carbons are produced by applying a low-temperature pyrolysis treatment to precursors containing nitrogen and sulfur.The DFT calculations of Na-ion adsorption energies at diverse heteroatom sites show marginal-S,pyrrolic N and pyridinic N with more intensive Na-ion adsorption ability than middle-S,C=O and pristine carbon.The N-NGC with dominant small graphitic regions delivers adsorption ability to Na-ion,while the S-NGC with significant single carbon lattice stripes demonstrates redox reaction with Na-ion.Evidently,in comparison with only adsorption-driven slope regions at high potential for N-NGC,the redox reaction-generated potentialplateau enables non-graphitized S-NGC superior discharge/charge capacity and cycle-stability in the slope region.This work could provide deep insight into the rational design of non-graphitized carbon with rich microstructure and composition.展开更多
Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from ...Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from severely detrimental structural transformation that causes rapid capacity attenuation.Herein,site-specific dual-doping with Fe and Mg ions is proposed to enhance the structural stability of LiNi0.9Mn0.1O2.The Fe3+dopants are inserted into transition metal sites(3b)and can favorably provide additional redox potential to compensate for charge and enhance the reversibility of anionic redox.The Mg ions are doped into the Li sites(3a)and serve as O_(2)^(-)-Mg^(2+)-O_(2)^(-)pillar to reinforce the electrostatic cohesion between the two adjacent transition-metal layers,which further suppress the cracking and the generation of harmful phase transitions,ultimately improving the cyclability.The theoretical calculations,including Bader charge and crystal orbital Hamilton populations(COHP)analyses,confirm that the doped Fe and Mg can form stable bonds with oxygen and the electrostatic repulsion of O_(2)^(-)-O_(2)^(-)can be effectively suppressed,which effectively mitigates oxygen anion loss at the high delithiation state.This dual-site doping strategy offers new avenues for understanding and regulating the crystalline oxygen redox and demonstrates significant potential for designing high-performance cobalt-free nickel-rich cathodes.展开更多
One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resoluti...One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resolution in depth is still far from atomic resolution.In scanning transmission electron microscopy(STEM),this poor depth resolution is due to the limitation of the illumination angle.To overcome this physical limitation,it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution.This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM.Furthermore,the statistical analysis approach remarkably improves the depth resolution,making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces.We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.展开更多
钙钛矿太阳能电池(perovskite solar cells,PVSCs)因长期稳定性差和制造成本高难以实现工业化生产。其制备中最常用的空穴传输材料(hole-transporting materials,HTMs)为2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴,需一定...钙钛矿太阳能电池(perovskite solar cells,PVSCs)因长期稳定性差和制造成本高难以实现工业化生产。其制备中最常用的空穴传输材料(hole-transporting materials,HTMs)为2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴,需一定量吸湿添加剂以实现高效的空穴提取,导致对水敏感的钙钛矿层受到破坏。无掺杂HTMs避免了吸湿添加剂的使用,且成本低、合成步骤简单。综述了应用于n-i-p型PVSCs的YT5、M7-TFSI、P3HT、PBDB-Cz等高效率无掺杂有机小分子以及聚合物HTMs,提出了理想HTMs在器件性能、分子结构、合成条件、经济成本等方面的设计原则,并展望了无掺杂HTMs在PVSCs商业化过程中的应用前景。展开更多
Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The p...Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.展开更多
Nano-scale titanium oxide memristors exhibit complex conductive characteristics, which have already been proved by existing research. One possible reason for this is that more than one mechanism exists, and together t...Nano-scale titanium oxide memristors exhibit complex conductive characteristics, which have already been proved by existing research. One possible reason for this is that more than one mechanism exists, and together they codetermine the conductive behaviors of the memristor. In this paper, we first analyze the theoretical base and conductive process of a memristor, and then propose a compatible circuit model to discuss and simulate the coexistence of the dopant drift and tunnel barrier-based mechanisms. Simulation results are given and compared with the published experimental data to prove the possibility of the coexistence. This work provides a practical model and some suggestions for studying the conductive mechanisms of memristors.展开更多
Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM...Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM) results show similar morphologies for the undoped and doped PbS nanostructures. X-ray diffraction (XRD) patterns of three sets of the nanostructures indicate that these nanostructures each have a PbS structure with a cubic phase. Evidence of dopant incorporation is demonstrated by X-ray photoelectron spectroscopy (XPS). Raman spectra of the synthesized samples con- firm the XRD results and indicate five Raman active modes, which relate to the PbS cubic phase for all the nanostructures. Room temperature photoluminescence (PL) and UV-Vis spectrometers are used to study optical properties of the undoped and doped PbS nanostructures. Optical characterization shows that emission and absorption peaks are in the infrared (IR) region of the electromagnetic spectrum for all PbS nanostructures. In addition, the optical studies of the doped PbS nanos- tructures reveal that the band gap of the Se-doped PbS is smaller, and the band gap of the Zn-doped PbS is bigger than the band gap of the undoped PbS nanostructures.展开更多
In order to perform automated calculations of defect and dopant properties in semiconductors and insulators, we developed a software package, the Defect and Dopant ab-initio Simulation Package(DASP), which is composed...In order to perform automated calculations of defect and dopant properties in semiconductors and insulators, we developed a software package, the Defect and Dopant ab-initio Simulation Package(DASP), which is composed of four modules for calculating:(ⅰ) elemental chemical potentials,(ⅱ) defect(dopant) formation energies and charge-state transition levels,(ⅲ) defect and carrier densities and(ⅳ) carrier dynamics properties of high-density defects. DASP uses the materials genome database for quick determination of competing secondary phases when calculating the elemental chemical potential that stabilizes compound semiconductors. DASP calls the ab-initio software to perform the total energy, structural relaxation and electronic structure calculations of the defect supercells with different charge states, based on which the defect formation energies and charge-state transition levels are calculated. Then DASP can calculate the equilibrium densities of defects and electron and hole carriers as well as the Fermi level in semiconductors under different chemical potential conditions and growth/working temperature. For high-density defects, DASP can calculate the carrier dynamics properties such as the photoluminescence(PL) spectrum and carrier capture cross sections which can interpret the deep level transient spectroscopy(DLTS). Here we will show three application examples of DASP in studying the undoped GaN, C-doped GaN and quasi-one-dimensional SbSeI.展开更多
The Ni(OH) 2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition...The Ni(OH) 2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition. The electrode reaction reversibility, the difficult extent of oxygen evolution, the proton diffusion coefficient, the discharge potential of middle value and the active material utilization of the Ni(OH) 2 film electrode were compared with those of the ones doped with the metal ions by means of cyclic voltammetry, potential step and constant current charge-discharge experiments. It was found that Ca 2+ , Co 2+ , Cd 2+ , Al 3+ etc. have obviously positive effect.展开更多
The influence of technological process parameters (aiming angle and implantation energy) on the distributions of dopant concentrations in a silicon substrate is investigated by computer modeling.
基金Project supported by the Natural Science Foundation of Shaanxi Province of China(Grant No.2013JQ1018)the Natural Science Foundation of Department of Education of Shaanxi Province of China(Grant No.15JK1759)+3 种基金the Double First-class University Construction Project of Northwest Universitythe financial support of Chinese University of Hong Kong(CUHK)(Grant No.4053084)University Grants Committee of Hong Kong,China(Grant No.24300814)start-up funding of CUHK。
文摘Tuning of the magnetic interaction plays the vital role in reducing the clustering of magnetic dopant in diluted magnetic semiconductors(DMS).Due to the not well understood magnetic mechanism and the interplay between different magnetic mechanisms,no efficient and universal tuning strategy is proposed at present.Here,the magnetic interactions and formation energies of isovalent-doped(Mn) and aliovalent(Cr)-doped LiZnAs are studied based on density functional theory(DFT).It is found that the dopant–dopant distance-dependent magnetic interaction is highly sensitive to the carrier concentration and carrier type and can only be explained by the interplay between two magnetic mechanisms,i.e.,superexchange and Zener’s p–d exchange model.Thus,the magnetic behavior and clustering of magnetic dopant can be tuned by the interplay between two magnetic mechanisms.The insensitivity of the tuning effect to U parameter suggests that our strategy could be universal to other DMS.
文摘β-gallium oxide(β-Ga2O3),as the typical representative of the fourth generation of semiconductors,has attracted increasing attention owing to its ultra-wide bandgap,superior optical properties,and excellent tolerance to high temperature and radiation.Compared to the single crystals of other semiconductors,high-quality and large-size β-Ga_(2)O_(3) single crystals can be grown with low-cost melting methods,making them highly competitive.In this review,the growth process,defects,and dopants ofβ-Ga_(2)O_(3) are primarily discussed.Firstly,the growth process(e.g.,decomposition,crucible corrosion,spiral growth,and development)ofβ-Ga_(2)O_(3) single crystals are summarized and compared in detail.Then,the defects of β-Ga_(2)O_(3) single crystals and the influence of defects on Schottky barrier diode(SBD)devices are emphatically discussed.Besides,the influences of impurities and intrinsic defects on the electronic and optical properties ofβ-Ga_(2)O_(3) are also briefly discussed.Concluding this comprehensive analysis,the article offers a concise summary of the current state,challenges and prospects ofβ-Ga_(2)O_(3) single crystals.
基金Tianjin Natural Science Foundation (23JCYBJC00660)Tianjin Enterprise Science and Technology Commissioner Project (23YDTPJC00490)+4 种基金National Natural Science Foundation of China (52203066, 51973157, 61904123)China Postdoctoral Science Foundation Grant (2023M742135)National innovation and entrepreneurship training program for college students (202310058007)Tianjin Municipal college students’ innovation and entrepreneurship training program (202310058088)State Key Laboratory of Membrane and Membrane Separation, Tiangong University。
文摘As the world transitions to green energy, there is a growing focus among many researchers on the requirement for high-efficient and safe batteries. Solid-state lithium metal batteries(SSLMBs) have emerged as a promising alternative to traditional liquid lithium-ion batteries(LIBs), offering higher energy density, enhanced safety, and longer lifespan. The rise of SSLMBs has brought about a transformation in energy storage, with aluminum(Al)-based material dopants playing a crucial role in advancing the next generation of batteries. The review highlights the significance of Al-based material dopants in SSLMBs applications, particularly its contributions to solid-state electrolytes(SSEs), cathodes, anodes,and other components of SSLMBs. Some studies have also shown that Al-based material dopants effectively enhance SSE ion conductivity, stabilize electrode and SSE interfaces, and suppress lithium dendrite growth, thereby enhancing the electrochemical performance of SSLMBs. Despite the above mentioned progresses, there are still problems and challenges need to be addressed. The review offers a comprehensive insight into the important role of Al in SSLMBs and addresses some of the issues related to its applications, endowing valuable support for the practical implementation of SSLMBs.
基金supported by the National Natural Science Foundation of China(52272296,51502092)the Fundamental Research Funds for the Central Universities(JKD01211601,1222201718002)+1 种基金the National Overseas High-Level Talent Youth Program in Chinathe Eastern Scholar Project of Shanghai。
文摘Non-graphitized carbon(NGC)has been extensively utilized as carbonaceous anode in sodium-ion batteries(SIBs).However,more optimization to achieve competitive capacity and stability is still challenging for SIBs.In the study,the dopant strategy is utilized to construct nitrogen/sulfur-doped non-graphitized carbon(N-NGC or S-NGC)shell decorated on three-dimensional graphene foam(GF)as a self-support electrode.The highly disordered microstructures of heteroatom doped carbons are produced by applying a low-temperature pyrolysis treatment to precursors containing nitrogen and sulfur.The DFT calculations of Na-ion adsorption energies at diverse heteroatom sites show marginal-S,pyrrolic N and pyridinic N with more intensive Na-ion adsorption ability than middle-S,C=O and pristine carbon.The N-NGC with dominant small graphitic regions delivers adsorption ability to Na-ion,while the S-NGC with significant single carbon lattice stripes demonstrates redox reaction with Na-ion.Evidently,in comparison with only adsorption-driven slope regions at high potential for N-NGC,the redox reaction-generated potentialplateau enables non-graphitized S-NGC superior discharge/charge capacity and cycle-stability in the slope region.This work could provide deep insight into the rational design of non-graphitized carbon with rich microstructure and composition.
基金the financial supports from the Key Research and Development Project in Shaanxi Province(2023-YBGY-446)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SX-TD003)。
文摘Layer-type LiNi0.9Mn0.1O2is promising to be the primary cathode material for lithium-ion batteries(LIBs)due to its excellent electrochemical performance.Unfortunately,the cathode with high nickel content suffers from severely detrimental structural transformation that causes rapid capacity attenuation.Herein,site-specific dual-doping with Fe and Mg ions is proposed to enhance the structural stability of LiNi0.9Mn0.1O2.The Fe3+dopants are inserted into transition metal sites(3b)and can favorably provide additional redox potential to compensate for charge and enhance the reversibility of anionic redox.The Mg ions are doped into the Li sites(3a)and serve as O_(2)^(-)-Mg^(2+)-O_(2)^(-)pillar to reinforce the electrostatic cohesion between the two adjacent transition-metal layers,which further suppress the cracking and the generation of harmful phase transitions,ultimately improving the cyclability.The theoretical calculations,including Bader charge and crystal orbital Hamilton populations(COHP)analyses,confirm that the doped Fe and Mg can form stable bonds with oxygen and the electrostatic repulsion of O_(2)^(-)-O_(2)^(-)can be effectively suppressed,which effectively mitigates oxygen anion loss at the high delithiation state.This dual-site doping strategy offers new avenues for understanding and regulating the crystalline oxygen redox and demonstrates significant potential for designing high-performance cobalt-free nickel-rich cathodes.
基金Project supported by JST-PRESTO (Grant No.JPMJPR1871)JST-FOREST (Grant No.JPMJFR2033)+2 种基金JST-ERATO (Grant No.JPMJER2202)KAKENHI JSPS (Grant Nos.JP19H05788,JP21H01614,and JP24H00373)“Next Generation Electron Microscopy”social cooperation program at the University of Tokyo。
文摘One of the major innovations awaiting in electron microscopy is full three-dimensional imaging at atomic resolution.Despite the success of aberration correction to deep sub-angstrom lateral resolution,spatial resolution in depth is still far from atomic resolution.In scanning transmission electron microscopy(STEM),this poor depth resolution is due to the limitation of the illumination angle.To overcome this physical limitation,it is essential to implement a next-generation aberration corrector in STEM that can significantly improve the depth resolution.This review discusses the capability of depth sectioning for three-dimensional imaging combined with large-angle illumination STEM.Furthermore,the statistical analysis approach remarkably improves the depth resolution,making it possible to achieve three-dimensional atomic resolution imaging at oxide surfaces.We will also discuss the future prospects of three-dimensional imaging at atomic resolution by STEM depth sectioning.
文摘钙钛矿太阳能电池(perovskite solar cells,PVSCs)因长期稳定性差和制造成本高难以实现工业化生产。其制备中最常用的空穴传输材料(hole-transporting materials,HTMs)为2,2′,7,7′-四[N,N-二(4-甲氧基苯基)氨基]-9,9′-螺二芴,需一定量吸湿添加剂以实现高效的空穴提取,导致对水敏感的钙钛矿层受到破坏。无掺杂HTMs避免了吸湿添加剂的使用,且成本低、合成步骤简单。综述了应用于n-i-p型PVSCs的YT5、M7-TFSI、P3HT、PBDB-Cz等高效率无掺杂有机小分子以及聚合物HTMs,提出了理想HTMs在器件性能、分子结构、合成条件、经济成本等方面的设计原则,并展望了无掺杂HTMs在PVSCs商业化过程中的应用前景。
基金Project supported by the Institute of Environmental Engineering,Peking University and China Postdoctoral Science Foundation(No.2005037032)
文摘Ti/Sb-SnO2 anodes were prepared by thermal decomposition to examine the influence of the amount of Sb dopant on the structure and electrocatalytic capability of the electrodes in the oxidation of 4-chlorophenol. The physicochemical properties of the Sb-SnO2 coating were markedly influenced by different amounts of Sb dopant. The electrodes, which contained 5% Sb dopant in the coating, presented a much more homogenous surface and much smaller mud-cracks, compared with Ti/Sb-SnO2 electrodes containing 10% or 15% Sb dopant, which exibited larger mud cracks and pores on the surface. However, the main microstructure remained unchanged with the addition of the Sb dopant. No new crystal phase was observed by X-ray diffraction (XRD). The electrochemical oxidation of 4-chlorophenol on the Ti/SnO2 electrode with 5% Sb dopant was inclined to electrochemical combustion; while for those containing more Sb dopant, intermediate species were accumulated. The electrodes with 5% Sb dopant showed the highest efficiency in the bulk electrolysis of 4-chlorophenol at a current density of 20 mA/cm^2 for 180 min; and the removal rates of 4-chlorophenol and COD were 51.0% and 48.9%, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.61171017)
文摘Nano-scale titanium oxide memristors exhibit complex conductive characteristics, which have already been proved by existing research. One possible reason for this is that more than one mechanism exists, and together they codetermine the conductive behaviors of the memristor. In this paper, we first analyze the theoretical base and conductive process of a memristor, and then propose a compatible circuit model to discuss and simulate the coexistence of the dopant drift and tunnel barrier-based mechanisms. Simulation results are given and compared with the published experimental data to prove the possibility of the coexistence. This work provides a practical model and some suggestions for studying the conductive mechanisms of memristors.
基金the Iranian National Science Foundation (INSF) for a research grant support the Islamic Azad University(I.A.U.), Masjed-Soleiman and Ahwaz Branches, respectively, for their financial support of this research workthe financial support from the Ministry of Higher Education of Malaysia for the High Impact Research Grant (UM.C/1/HIR/MOHE/SC/21)
文摘Selenium and zinc are used as anionic and cationic dopant elements to dope PbS nanostructures. The undoped and doped PbS nanostructures are grown using a thermal evaporation method. Scanning electron microscopy (SEM) results show similar morphologies for the undoped and doped PbS nanostructures. X-ray diffraction (XRD) patterns of three sets of the nanostructures indicate that these nanostructures each have a PbS structure with a cubic phase. Evidence of dopant incorporation is demonstrated by X-ray photoelectron spectroscopy (XPS). Raman spectra of the synthesized samples con- firm the XRD results and indicate five Raman active modes, which relate to the PbS cubic phase for all the nanostructures. Room temperature photoluminescence (PL) and UV-Vis spectrometers are used to study optical properties of the undoped and doped PbS nanostructures. Optical characterization shows that emission and absorption peaks are in the infrared (IR) region of the electromagnetic spectrum for all PbS nanostructures. In addition, the optical studies of the doped PbS nanos- tructures reveal that the band gap of the Se-doped PbS is smaller, and the band gap of the Zn-doped PbS is bigger than the band gap of the undoped PbS nanostructures.
基金supported by the joint project between Hongzhiwei Technology (Shanghai) Co., Ltd. and Fudan University。
文摘In order to perform automated calculations of defect and dopant properties in semiconductors and insulators, we developed a software package, the Defect and Dopant ab-initio Simulation Package(DASP), which is composed of four modules for calculating:(ⅰ) elemental chemical potentials,(ⅱ) defect(dopant) formation energies and charge-state transition levels,(ⅲ) defect and carrier densities and(ⅳ) carrier dynamics properties of high-density defects. DASP uses the materials genome database for quick determination of competing secondary phases when calculating the elemental chemical potential that stabilizes compound semiconductors. DASP calls the ab-initio software to perform the total energy, structural relaxation and electronic structure calculations of the defect supercells with different charge states, based on which the defect formation energies and charge-state transition levels are calculated. Then DASP can calculate the equilibrium densities of defects and electron and hole carriers as well as the Fermi level in semiconductors under different chemical potential conditions and growth/working temperature. For high-density defects, DASP can calculate the carrier dynamics properties such as the photoluminescence(PL) spectrum and carrier capture cross sections which can interpret the deep level transient spectroscopy(DLTS). Here we will show three application examples of DASP in studying the undoped GaN, C-doped GaN and quasi-one-dimensional SbSeI.
基金Supported by the Science Foundation of Jilin Province( No.980 5 6 2
文摘The Ni(OH) 2 film electrodes doped respectively with alkali-earth metal aluminum, lead, partial transition metal and some rare-earth metal(altogether 17 kinds of metals) ions were prepared by cathode electrodeposition. The electrode reaction reversibility, the difficult extent of oxygen evolution, the proton diffusion coefficient, the discharge potential of middle value and the active material utilization of the Ni(OH) 2 film electrode were compared with those of the ones doped with the metal ions by means of cyclic voltammetry, potential step and constant current charge-discharge experiments. It was found that Ca 2+ , Co 2+ , Cd 2+ , Al 3+ etc. have obviously positive effect.
文摘The influence of technological process parameters (aiming angle and implantation energy) on the distributions of dopant concentrations in a silicon substrate is investigated by computer modeling.