β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructur...β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.展开更多
SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement...SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement,respectively.The addition of nanoparticles was 0.1%,0.3%,and 0.5%(mass fraction) of the composites.The results of microstructural evaluation and mechanical properties indicate that the nanoparticles can be dispersed into magnesium alloys efficiently and uniformly with the aid of ultrasonic vibration.As compared with the matrix alloys,the grains of composites were refined and the mechanical properties of composites were improved significantly.The SEM and DSC analyses show that the SiC nanoparticles can act as the heterogeneous nucleation of α-Mg.Also,the strengthening mechanism responsible for the composites reinforced with SiC nanoparticles was discussed.展开更多
In SiC(f)/Ti-6Al-4V composites, the microstructure of the matrix close to the fiber was different from that of the fiber-less material. Microstructure observations show that a layer of fine grains was located adjace...In SiC(f)/Ti-6Al-4V composites, the microstructure of the matrix close to the fiber was different from that of the fiber-less material. Microstructure observations show that a layer of fine grains was located adjacent to the fiber, and more dislocations and faults were found in this region. Higher recrystallization nucleation rate due to the undeformed SiC fiber and thermal residual stress induced during cooling from the fabrication temperature caused the microstructural changes of the matrix. Hardness measurement indicates that the matrix in the fiber neighborhood was strengthened, and the strengthening effect decreased with distance away from the fiber.展开更多
在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(...在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(2))使SiC颗粒表面产生火花放电,Al-Si-O化合物中的缺陷为SiC颗粒表面放电电流的传导提供优先路径。1200s时铝基复合材料表面形成5.5μm厚的均匀膜层,膜层的表面自由能在40s时达到最大值37.10 m J/cm^(2),并在1200 s时下降到25.95 m J/cm^(2)。此外,等离子体电解氧化处理可以显著提高复合材料的耐蚀性。展开更多
A new preparation technique-"block dispersal and cast" method is introduced, and three kinds of powder mixing methods, vertical, horizontal and inclining styles, are compared. The results demonstrate that th...A new preparation technique-"block dispersal and cast" method is introduced, and three kinds of powder mixing methods, vertical, horizontal and inclining styles, are compared. The results demonstrate that the inclining style is the best way to mix powders. The Al and nano SiC powders are pressed into blocks, dipped into molten Al, stirred into mold so that SiC/Al matrix composites can be obtained at last. The microstructure of SiC particle reinforced Al matrix composite prepared by "block dispersal and cast" method have been studied using scanning electron microscopy (SEM). Phase analysis has also been conducted by means of X-ray diffraction (XRD). The results show that nano SiC particles can be dispersed uniformly in Al matrix. Thus, it is feasible to prepare SiC particle reinforced Al matrix composites by this method.展开更多
Compression tests on semi-solid SiCp/AZ61 magnesium matrix composites were carried out using Thermecmastor-Z dynamic material testing machine.Influences of strain-rate,strain,temperature and volume fraction of SiC par...Compression tests on semi-solid SiCp/AZ61 magnesium matrix composites were carried out using Thermecmastor-Z dynamic material testing machine.Influences of strain-rate,strain,temperature and volume fraction of SiC particles on flow stress were analyzed.The results show that the flow stress of semi-solid SiCp/AZ61 composites is sensitive to temperature and strain rate.The lower the temperature and the larger the strain rate,the higher the flow stress.Meanwhile the flow stress increases with the increase of the volume fraction of SiC particles.This study helps establish the constitutive model of magnesium matrix composites and offers theoretic and experimental references for its thixoforming.展开更多
The present paper reveals the wear behaviour of Zinc - Aluminium alloy reinforced with SiC particulate metal matrix composite. The composite is prepared using liquid metallurgy technique. The unlubricated pin-on disc ...The present paper reveals the wear behaviour of Zinc - Aluminium alloy reinforced with SiC particulate metal matrix composite. The composite is prepared using liquid metallurgy technique. The unlubricated pin-on disc wear test is conducted to find the wear behaviour of the ZA43 alloy based composite. The sliding wear test is conducted for different load, speed and time. The result reveals that wear rates of composite is reduced as reinforcement increases. For the same working conditions wear rate increases with increasing load and with increasing speed. The tested samples are examined by taking micro structure photos and analyzed for the type of wear. Dominating wear types observed are delamination and abrasion.展开更多
基金Funded by the Research Collaborative Innovation Project of Jiangsu Province,China(BY2009129)the Science and Technology Project of Suzhou,China(SYG0905)
文摘β-SiC nanoparticle reinforced A1 matrix (nano-SiCp/A1) composite was prepared by a multi- step powder metallurgy strategy including presureless sintering, hot compacting process and hot extrusion. The microstructures of the as-prepared composites were observed by scanning electronic microscopy (SEM), and the mechanical properties were characterized by tensile strength measurement and Brinell hardness test. The experimental results revealed that the tensile strength of the composite with the addition of 5wt%/3-SIC nanoprtieles could be increased to 215 MPa, increasing by 110% compared with pure A1 matrix. Comparative experiments reflected that theβ-SIC nanoprticles showed significant reinforcement effect than traditional a-SiC micro-sized particles. The preparation process and sintering procedure were investigated to develop a cost effective preparation strategy to fabricate nano-SiCp/A1 composite.
基金Project(2007CB613706) supported by the National Basic Research Program of ChinaProject(00900054R4001) supported by Innovation Project for Talents of BJUTProject(00900054K4004) supported by the Science Foundation for Youths of BJUT
文摘SiC nanoparticles reinforced magnesium matrix composites were fabricated by ultrasonic method.The AZ91 alloy and SiC nanoparticles with the average diameter of 50 nm were used as the matrix alloy and the reinforcement,respectively.The addition of nanoparticles was 0.1%,0.3%,and 0.5%(mass fraction) of the composites.The results of microstructural evaluation and mechanical properties indicate that the nanoparticles can be dispersed into magnesium alloys efficiently and uniformly with the aid of ultrasonic vibration.As compared with the matrix alloys,the grains of composites were refined and the mechanical properties of composites were improved significantly.The SEM and DSC analyses show that the SiC nanoparticles can act as the heterogeneous nucleation of α-Mg.Also,the strengthening mechanism responsible for the composites reinforced with SiC nanoparticles was discussed.
文摘In SiC(f)/Ti-6Al-4V composites, the microstructure of the matrix close to the fiber was different from that of the fiber-less material. Microstructure observations show that a layer of fine grains was located adjacent to the fiber, and more dislocations and faults were found in this region. Higher recrystallization nucleation rate due to the undeformed SiC fiber and thermal residual stress induced during cooling from the fabrication temperature caused the microstructural changes of the matrix. Hardness measurement indicates that the matrix in the fiber neighborhood was strengthened, and the strengthening effect decreased with distance away from the fiber.
基金sponsored by the National Natural Science Foundation of China(Nos.12105017,51671032)Beijing Municipal Natural Science Foundation,China(No.2172029)。
文摘在硅酸盐溶液中采用等离子体电解氧化技术在60%SiCP(体积分数)/2009铝基复合材料表面制备陶瓷膜。研究氧化膜的显微组织、成分、润湿性及其耐腐蚀性能,探讨SiC颗粒表面火花放电的产生机理。结果表明,来自硅酸盐溶液的不溶性化合物(SiO_(2))使SiC颗粒表面产生火花放电,Al-Si-O化合物中的缺陷为SiC颗粒表面放电电流的传导提供优先路径。1200s时铝基复合材料表面形成5.5μm厚的均匀膜层,膜层的表面自由能在40s时达到最大值37.10 m J/cm^(2),并在1200 s时下降到25.95 m J/cm^(2)。此外,等离子体电解氧化处理可以显著提高复合材料的耐蚀性。
文摘A new preparation technique-"block dispersal and cast" method is introduced, and three kinds of powder mixing methods, vertical, horizontal and inclining styles, are compared. The results demonstrate that the inclining style is the best way to mix powders. The Al and nano SiC powders are pressed into blocks, dipped into molten Al, stirred into mold so that SiC/Al matrix composites can be obtained at last. The microstructure of SiC particle reinforced Al matrix composite prepared by "block dispersal and cast" method have been studied using scanning electron microscopy (SEM). Phase analysis has also been conducted by means of X-ray diffraction (XRD). The results show that nano SiC particles can be dispersed uniformly in Al matrix. Thus, it is feasible to prepare SiC particle reinforced Al matrix composites by this method.
基金Projects (50765005,50465003) supported by the National Natural Science Foundation of ChinaProject (S00875) supported by Innovative Group of Science and Technology of College of Jiangxi Province,China
文摘Compression tests on semi-solid SiCp/AZ61 magnesium matrix composites were carried out using Thermecmastor-Z dynamic material testing machine.Influences of strain-rate,strain,temperature and volume fraction of SiC particles on flow stress were analyzed.The results show that the flow stress of semi-solid SiCp/AZ61 composites is sensitive to temperature and strain rate.The lower the temperature and the larger the strain rate,the higher the flow stress.Meanwhile the flow stress increases with the increase of the volume fraction of SiC particles.This study helps establish the constitutive model of magnesium matrix composites and offers theoretic and experimental references for its thixoforming.
文摘The present paper reveals the wear behaviour of Zinc - Aluminium alloy reinforced with SiC particulate metal matrix composite. The composite is prepared using liquid metallurgy technique. The unlubricated pin-on disc wear test is conducted to find the wear behaviour of the ZA43 alloy based composite. The sliding wear test is conducted for different load, speed and time. The result reveals that wear rates of composite is reduced as reinforcement increases. For the same working conditions wear rate increases with increasing load and with increasing speed. The tested samples are examined by taking micro structure photos and analyzed for the type of wear. Dominating wear types observed are delamination and abrasion.