Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can...Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can be coated with silicon oxide(SiO_(2))with low refractive index and low UV absorptivity via high-temperature oxidation,reducing the loss of UV energy in the DLP process and realizing the DLP preparation of the SiC ceramics.However,it is necessary to explore a high-temperature modification process to obtain a better modification effect of the SiC powders.Therefore,the high-temperature modification behavior of the SiC powders is thoroughly investigated in this paper.The results show that nano-scale oxide film is formed on the surface of the SiC powders by short-time high-temperature oxidation,effectively reducing the UV absorptivity and the surface refractive index(nʹ)of the SiC powders.When the oxidation temperature is 1300℃,compared with that of unoxidized SiC powders,the UV absorptivity of oxidized SiC powders decreases from 0.5065 to 0.4654,and a curing depth of SiC slurry increases from 22±4 to 59±4μm.Finally,SiC green bodies are successfully prepared by the DLP with the the oxidized powders,and flexural strength of SiC sintered parts reaches 47.9±2.3 MPa after 3 h of atmospheric sintering at 2000℃without any sintering aid.展开更多
High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for...High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for high-resistivity SiC single crystal growth, the preparation technology of SiC powder is different from that of SiC ceramic. The influence of the shape and size of carbon particles on the morphology and phase composition of the obtained SiC powder were discussed. The phase composition and morphology of the products were investigated by X-ray diffraction, Raman microspectroscopy and scanning electron microscopy. The results show that the composition of resulting SiC by in-situ synthesis from Si/C mixture strongly depends on the nature of the carbon source, which corresponds to the particle size and shape, as well as the preparation temperature. In the experimental conditions, flake graphite is more suitable for the synthesis of SiC powder than activated carbon because of its relatively smaller particle size and flake shape, which make the conversion more complete. The major phase composition of the full conversion products is β-SiC, with traces of α-SiC. Glow discharge mass spectroscopy measurements indicated that SiC powder synthesized with this chemical reaction method can meet the purity demand for the growth of high-resistivity SiC single crystals.展开更多
SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this ...SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive.展开更多
The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was pro...The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was proposed. By acidwashing, on the one hand, because the maximum Zeta potential of SiC powder increases to 72.49 mV with the decreasing content of metal oxide adsorbed on the SiC powder surface, the repulsion force between SiC powders that dispersed in slurry is enhanced, thus the SiC powder can be fully dispersed in slurry. On the other hand, after HF acidwashing, with the OH^- group adsorbed on SiC powder surface destroyed and replaced by the Fion, the hydrogen bond adsorbed on the OHgroup is also destroyed. Therefore, the surface property of the SiC powder is changed from hydrophilic to hydrophobic; H2O that adsorbed on SiC powder surface is released and can flow freely, and it actually increases the content of the effective flow phase in the slurry. These changes of SiC powder surface property can be proved by XPS and FTIR analysis. Finally, the viscosity of SiC slurry is decreased greatly, and when the viscosity of the slurry is lower than 1 Pa·s, the solid volume fraction of SiC powder in the slurry is maximized to 61.5 vol.%.展开更多
The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me...The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.展开更多
Friction stir processing (FSP) was used to incorporate SiC particles into the matrix of A356 Al alloy to form composite material. Constant tool rotation speed of 1800 r/min and travel speed of 127 mm/min were used i...Friction stir processing (FSP) was used to incorporate SiC particles into the matrix of A356 Al alloy to form composite material. Constant tool rotation speed of 1800 r/min and travel speed of 127 mm/min were used in this study. The base metal (BM) shows the hypoeutectic Al-Si dendrite structure. The microstructure of the stir zone (SZ) is very different from that of the BM. The eutectic Si and SiC particles are dispersed homogeneously in primary Al solid solution. The thermo-mechanically affected zone (TMAZ), where the original microstructure is greatly deformed, is characterized by dispersed eutectic Si and SiC particles aligned along the rotational direction of the tool. The hardness of the SZ shows higher value than that of the BM because some defects are remarkably reduced and the eutectic Si and SiC particles are dispersed over the SZ.展开更多
To improve the properties of low-carbonization of MgO–C refractories,the introduction of composite additives is an effective strategy.Al_(2)O_(3)–SiC composite powder was prepared from clay using electromagnetic ind...To improve the properties of low-carbonization of MgO–C refractories,the introduction of composite additives is an effective strategy.Al_(2)O_(3)–SiC composite powder was prepared from clay using electromagnetic induction heating and carbon embedded methods.Further,the Al_(2)O_(3)–SiC composite powder synthesized by electromagnetic induction heating at 600 A was added into low-carbon MgO–C refractories(4 wt.%)to improve their properties.The results showed that when the addition amount of Al_(2)O_(3)–SiC composite powder is within the range of 2.5–5.0 wt.%,the properties of low-carbon MgO–C samples were significantly improved,e.g.,the apparent porosity of 7.58%–8.04%,the bulk density of 2.98–2.99 g cm-3,the cold compressive strength of 55.72–57.93 MPa,the residual strength after three air quenching at 1100°C of 74.86%–78.04%,and the decarburized layer depth after oxidized at 1400°C for 2 h of 14.03–14.87 mm.Consequently,the idea for the rapid synthesis of Al_(2)O_(3)–SiC composite powder provides an alternative low-carbon MgO–C refractories performance optimization strategy.展开更多
基金supported by grants from the Key Project Fund for Science and Technology Development of Guangdong Province (2020B090924003)the National Natural Science Foundation of China (51975230)Major Special Projects of Technological Innovation in Hubei Province (2019AAA002).
文摘Fabrication of silicon carbide(SiC)ceramics by digital light processing(DLP)technology is difficult owing to high refractive index and high ultraviolet(UV)absorptivity of SiC powders.The surface of the SiC powders can be coated with silicon oxide(SiO_(2))with low refractive index and low UV absorptivity via high-temperature oxidation,reducing the loss of UV energy in the DLP process and realizing the DLP preparation of the SiC ceramics.However,it is necessary to explore a high-temperature modification process to obtain a better modification effect of the SiC powders.Therefore,the high-temperature modification behavior of the SiC powders is thoroughly investigated in this paper.The results show that nano-scale oxide film is formed on the surface of the SiC powders by short-time high-temperature oxidation,effectively reducing the UV absorptivity and the surface refractive index(nʹ)of the SiC powders.When the oxidation temperature is 1300℃,compared with that of unoxidized SiC powders,the UV absorptivity of oxidized SiC powders decreases from 0.5065 to 0.4654,and a curing depth of SiC slurry increases from 22±4 to 59±4μm.Finally,SiC green bodies are successfully prepared by the DLP with the the oxidized powders,and flexural strength of SiC sintered parts reaches 47.9±2.3 MPa after 3 h of atmospheric sintering at 2000℃without any sintering aid.
文摘High purity silicon carbide (SIC) powder was synthesized in-situ by chemical reaction between silicon and carbon powder. In order to ensure that the impurity concentration of the resulting SiC powder is suitable for high-resistivity SiC single crystal growth, the preparation technology of SiC powder is different from that of SiC ceramic. The influence of the shape and size of carbon particles on the morphology and phase composition of the obtained SiC powder were discussed. The phase composition and morphology of the products were investigated by X-ray diffraction, Raman microspectroscopy and scanning electron microscopy. The results show that the composition of resulting SiC by in-situ synthesis from Si/C mixture strongly depends on the nature of the carbon source, which corresponds to the particle size and shape, as well as the preparation temperature. In the experimental conditions, flake graphite is more suitable for the synthesis of SiC powder than activated carbon because of its relatively smaller particle size and flake shape, which make the conversion more complete. The major phase composition of the full conversion products is β-SiC, with traces of α-SiC. Glow discharge mass spectroscopy measurements indicated that SiC powder synthesized with this chemical reaction method can meet the purity demand for the growth of high-resistivity SiC single crystals.
基金supported by National Natural Science Foundation of China(Grant No. 50775133)
文摘SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness(Ra) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid solidification presented can significantly improve the finishing performance and service life of magnetic abrasive, and provide a more practical approach for large-scale industrial production of magnetic abrasive.
基金This work was financially supported by the Doctoral Foundation of Xi'an Jiaotong University (No. DFXJTU2004-04).
文摘The disadvantageous effects of colloidal SiO2 layer and micro-content of metal oxide adsorbed on SiC powder surface on SiC slurry stable dispersion were studied, and the novel method to avoid this disadvantage was proposed. By acidwashing, on the one hand, because the maximum Zeta potential of SiC powder increases to 72.49 mV with the decreasing content of metal oxide adsorbed on the SiC powder surface, the repulsion force between SiC powders that dispersed in slurry is enhanced, thus the SiC powder can be fully dispersed in slurry. On the other hand, after HF acidwashing, with the OH^- group adsorbed on SiC powder surface destroyed and replaced by the Fion, the hydrogen bond adsorbed on the OHgroup is also destroyed. Therefore, the surface property of the SiC powder is changed from hydrophilic to hydrophobic; H2O that adsorbed on SiC powder surface is released and can flow freely, and it actually increases the content of the effective flow phase in the slurry. These changes of SiC powder surface property can be proved by XPS and FTIR analysis. Finally, the viscosity of SiC slurry is decreased greatly, and when the viscosity of the slurry is lower than 1 Pa·s, the solid volume fraction of SiC powder in the slurry is maximized to 61.5 vol.%.
文摘The dielectric properties of nano Si/C/N composite powder and nano SiC powder at high frequencies have been studied. The nano Si/C/N composite powder and nano SiC powder were synthesized from hexamethyldisilazane ((Me 3Si) 2NH) (Me:CH 3) and SiH 4 C 2H 2 respectively by a laser induced gas phase reaction. The complex permittivities of the nano Si/C/N composite powder and nano SiC powder were measured between 8 2GHz and 12 4GHz. The real and imaginary parts of the complex permittivities of nano Si/C/N composite powder are much higher than those of nano SiC powder. The SiC microcrystalline in the nano Si/C/N composite powder dissolved a great deal of nitrogen. The local structure around Si atoms changed by introducing N into SiC. Carbon atoms around Si were substituted by N atoms. So charged defects and quasi free electrons moved in response to the electric field, diffusion or polarization current resulted from the field propagation. The high ε″and loss factor tgδ(ε″/ε′) of Si/C/N composite powder were due to the dielectric relaxation.
基金supported by a grant from the Fundamental R & D Program (No.10038688) for Core Technology of Materials funded by the Ministry of Knowledge Economy, Republic of Korea
文摘Friction stir processing (FSP) was used to incorporate SiC particles into the matrix of A356 Al alloy to form composite material. Constant tool rotation speed of 1800 r/min and travel speed of 127 mm/min were used in this study. The base metal (BM) shows the hypoeutectic Al-Si dendrite structure. The microstructure of the stir zone (SZ) is very different from that of the BM. The eutectic Si and SiC particles are dispersed homogeneously in primary Al solid solution. The thermo-mechanically affected zone (TMAZ), where the original microstructure is greatly deformed, is characterized by dispersed eutectic Si and SiC particles aligned along the rotational direction of the tool. The hardness of the SZ shows higher value than that of the BM because some defects are remarkably reduced and the eutectic Si and SiC particles are dispersed over the SZ.
基金This work was financially supported by the National Natural Science Foundation of China(Grant Nos.U20A20239 and U1908227)the Fundamental Research Funds for the Central Universities(Grant No.N2125002)the open research fund for State Key Laboratory of Advance Refractories(Grant No.SKLAR202001).
文摘To improve the properties of low-carbonization of MgO–C refractories,the introduction of composite additives is an effective strategy.Al_(2)O_(3)–SiC composite powder was prepared from clay using electromagnetic induction heating and carbon embedded methods.Further,the Al_(2)O_(3)–SiC composite powder synthesized by electromagnetic induction heating at 600 A was added into low-carbon MgO–C refractories(4 wt.%)to improve their properties.The results showed that when the addition amount of Al_(2)O_(3)–SiC composite powder is within the range of 2.5–5.0 wt.%,the properties of low-carbon MgO–C samples were significantly improved,e.g.,the apparent porosity of 7.58%–8.04%,the bulk density of 2.98–2.99 g cm-3,the cold compressive strength of 55.72–57.93 MPa,the residual strength after three air quenching at 1100°C of 74.86%–78.04%,and the decarburized layer depth after oxidized at 1400°C for 2 h of 14.03–14.87 mm.Consequently,the idea for the rapid synthesis of Al_(2)O_(3)–SiC composite powder provides an alternative low-carbon MgO–C refractories performance optimization strategy.