期刊文献+
共找到4,856篇文章
< 1 2 243 >
每页显示 20 50 100
Tribological Properties of SiC/Cu Composite at High Temperature
1
作者 范冰冰 张锐 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2009年第6期888-891,共4页
SiC/Cu composites were prepared by hot pressing. The high temperature tribological properties of the composites were investigated. XRD, SEM techniques were carried out to characterize the samples. It is found that the... SiC/Cu composites were prepared by hot pressing. The high temperature tribological properties of the composites were investigated. XRD, SEM techniques were carried out to characterize the samples. It is found that the friction coefficient of SiC/Cu composites increases with the increasing SiC content. The SiC reinforcement particles are worn down other than removed by pulling out during the wear test. Oxidation of Cu debris leads to the smooth contacting surface. Ring crack is formed under the cyclic wear test. The crack propagates through the damaged matrix and along the brittle interface between SiC particles and Cu matrix. 展开更多
关键词 sic/cu composite tribological properties high temperature WEAR ring crack
下载PDF
Investigation on the sintering behavior of SiC/Cu composites
2
作者 FAN Bing-bing LIU Rui-yu ZHANG Shi-xun LI Shou-shan LI Kai ZHANG Rui 《材料科学与工程(中英文版)》 2008年第4期58-60,共3页
关键词 铜复合材料 烧结行为 碳化硅 扫描电镜技术 涂层方法 烧结过程 X射线衍射 复合粒子
下载PDF
Recent Advances in Interface Modification of Cu/graphite Composites and Layered Ternary Carbides of Modified Layer Candidate
3
作者 WEI Hongming LI Mingchao +4 位作者 LI Xiaoya ZHAN Wenyi LI Feiyang DAI Yanzhang ZOU Jianpeng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第5期1061-1072,共12页
We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-mo... We review the fundamental properties and significant issues related to Cu/graphite composites.In particular,recent research on the interfacial modification of Cu/graphite composites is addressed,including the metal-modified layer,carbide-modified layer,and combined modified layer.Additionally,we propose the use of ternary layered carbide as an interface modification layer for Cu/graphite composites. 展开更多
关键词 cu/graphite composites interfacial bonding surface modification WETTABILITY layered ternary carbides
下载PDF
Microstructure and properties of Cu matrix composites reinforced with surface-modified Kovar particles
4
作者 Tao MENG Ri-chu WANG +1 位作者 Zhi-yong CAI Ying-jun YAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第10期3251-3264,共14页
The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composite... The thermal conductivity of Cu/Kovar composites was improved by suppressing element diffusion at the interfaces through the formation of FeWO_(4)coating on the Kovar particles via vacuum deposition.Cu matrix composites reinforced with unmodified(Cu/Kovar)and modified Kovar(Cu/Kovar@)particles were prepared by hot pressing.The results demonstrate that the interfaces of Cu/FeWO_(4)and FeWO_(4)/Kovar in the Cu/Kovar@composites exhibit strong bonding,and no secondary phase is generated.The presence of FeWO_(4)impedes interfacial diffusion within the composite,resulting in an increase in grain size and a decrease in dislocation density.After surface modification of the Kovar particle,the thermal conductivity of Cu/Kovar@composite is increased by 110%from 40.6 to 85.6 W·m^(-1)·K^(-1).Moreover,the thermal expansion coefficient of the Cu/Kovar@composite is 9.8×10^(-6)K^(-1),meeting the electronic packaging requirements. 展开更多
关键词 electronic packaging material cu/Kovar composite surface modification thermal conductivity
下载PDF
Multi-scale Modeling and Finite Element Analyses of Thermal Conductivity of 3D C/SiC Composites Fabricating by Flexible-Oriented Woven Process
5
作者 Zheng Sun Zhongde Shan +5 位作者 Hao Huang Dong Wang Wang Wang Jiale Liu Chenchen Tan Chaozhong Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期275-288,共14页
Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale pr... Thermal conductivity is one of the most significant criterion of three-dimensional carbon fiber-reinforced SiC matrix composites(3D C/SiC).Represent volume element(RVE)models of microscale,void/matrix and mesoscale proposed in this work are used to simulate the thermal conductivity behaviors of the 3D C/SiC composites.An entirely new process is introduced to weave the preform with three-dimensional orthogonal architecture.The 3D steady-state analysis step is created for assessing the thermal conductivity behaviors of the composites by applying periodic temperature boundary conditions.Three RVE models of cuboid,hexagonal and fiber random distribution are respectively developed to comparatively study the influence of fiber package pattern on the thermal conductivities at the microscale.Besides,the effect of void morphology on the thermal conductivity of the matrix is analyzed by the void/matrix models.The prediction results at the mesoscale correspond closely to the experimental values.The effect of the porosities and fiber volume fractions on the thermal conductivities is also taken into consideration.The multi-scale models mentioned in this paper can be used to predict the thermal conductivity behaviors of other composites with complex structures. 展开更多
关键词 3D C/sic composites Finite element analyses Multi-scale modeling Thermal conductivity
下载PDF
Tensile Mechanical Behavior and Failure Mechanism of a Plain-Woven SiCf/SiC Composites at Room and Elevated Temperatures
6
作者 Jianze He Xuefeng Teng +3 位作者 Xiao’an Hu Xiao Luo Qi Zeng Xueqiang Cao 《Journal of Materials Science and Chemical Engineering》 2024年第4期67-83,共17页
Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. I... Ceramic matrix composites (CMCs) are the preferred materials for solving advanced aerospace high-temperature structural components;it has the comprehensive advantages of higher temperature (~1500˚C) and low density. In service environments, CMCs exhibit complex damage mechanisms and failure modes, which are affected by constituent materials, meso-architecture and inhere defects. In this paper, the in-plane tensile mechanical behavior of a plain-woven SiCf/SiC composite at room and elevated temperatures was investigated, and the factors affecting the tensile strength of the material were discussed in depth. The results show that the tensile modulus and strength of SiCf/SiC composites at high temperature are lower, but the fracture strain increases and the toughness of the composites is enhanced;the stitching holes significantly weaken the tensile strength of the material, resulting in the material is easy to break at the cross-section with stitching holes. 展开更多
关键词 Plain-Woven sicf/sic composites Damage and Failure Analysis Stitching Hole
下载PDF
La_(2)O_(3)掺杂Ti_(3)SiC_(2)/Cu复合材料的制备与性能
7
作者 伊洪勇 陈忠文 +6 位作者 王俊青 张云龙 李成海 张瑞霞 潘佳琦 李文博 贾辰凡 《铜业工程》 CAS 2024年第1期22-28,共7页
铜合金作为热管理材料长期服役时,会出现冷-热循环条件下的结构性失效问题,因此考虑将具有低膨胀系数的MAX相材料引入到铜合金中,来降低复合材料的热膨胀性。Ti_(3)SiC_(2)是一种兼具陶瓷和金属的优良特性的三元层状陶瓷材料,具有自润... 铜合金作为热管理材料长期服役时,会出现冷-热循环条件下的结构性失效问题,因此考虑将具有低膨胀系数的MAX相材料引入到铜合金中,来降低复合材料的热膨胀性。Ti_(3)SiC_(2)是一种兼具陶瓷和金属的优良特性的三元层状陶瓷材料,具有自润滑、高韧性、高导电性等特点。作为增强相,Ti_(3)SiC_(2)能够提高Cu基复合材料的摩擦性能,降低复合材料的热膨胀系数,因此被应广泛用于电子封装材料、热管理材料等领域。本文将稀土氧化物La_(2)O_(3)引入到Ti_(3)SiC_(2)/Cu复合材料中,研究了La_(2)O_(3)掺杂含量对Ti_(3)SiC_(2)/Cu复合材料物相组成、表面形貌、显微硬度和摩擦因数等的影响。研究发现,利用热压烧结技术能够获得致密度较高的Ti_(3)SiC_(2)/Cu复合材料,相对密度在98.5%以上。适量掺杂La_(2)O_(3)后,Ti_(3)SiC_(2)/Cu复合材料的显微硬度有所增加,能够实现Ti_(3)SiC_(2)/Cu复合材料的弥散强化。随着La_(2)O_(3)掺杂量增加,Ti_(3)SiC_(2)/Cu复合材料的摩擦因数呈现出先降低后增加的趋势。在Cu基复合材料中添加Ti_(3)SiC_(2),能够起到润滑的作用,有利于降低摩擦因数。本研究可为Ti_(3)SiC_(2)/Cu复合材料的工程应用提供试验依据。 展开更多
关键词 Ti_(3)sic_(2) cu复合材料 耐磨性 显微硬度
下载PDF
Revealing the Role of Defect in 3D Graphene-Based Photocatalytic Composite for Efficient Elimination of Antibiotic and Heavy Metal Combined Pollution
8
作者 Xin Wang Jingzhe Zhang +3 位作者 Hui Wang Mengjun Liang Qiang Wang Fuming Chen 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期164-174,共11页
Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and t... Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and the process mechanism are complicated and indefinable.Herein,TiO_(2)/CN/3DC was fabricated and defects were introduced into the tripartite structure with separate O_(2)plasma treatment for the single component.We find that defect engineering can improve the photocatalytic activity,attributing to the increase of the contribution from h^(+)and OH.In contrast to TiO_(2)/CN/3DC with a photocatalytic tetracycline removal rate of 75.2%,the removal rate of TC with D-TiO_(2)/CN/3DC has increased to 88.5%.Moreover,the reactive sites of tetracycline can be increased by adsorbing on the defective composites.The defect construction on TiO_(2)shows the advantages in tetracycline degradation and Cu^(2+)adsorption,but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu^(2+)combined system.In contrast,the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu^(2+).These findings can provide new insights into water treatment strategies with defect engineering. 展开更多
关键词 3D graphene cu DEFECT photocatalytic composite TETRACYCLINE
下载PDF
INVESTIGATION ON MECHANICAL PROPERTIES OF ZN-AL/SIC PARTICULATE COMPOSITES
9
作者 陶杰 肖军 +2 位作者 崔益华 李顺林 沃丁柱 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 1995年第1期23-29,共7页
In order to improve the properties of ZA 27 and ZA4-3 zinc alloys and broaden their application ranges,SiC particlj1Ale composites, prepared by means of rheological casting technology, are investigated individually on... In order to improve the properties of ZA 27 and ZA4-3 zinc alloys and broaden their application ranges,SiC particlj1Ale composites, prepared by means of rheological casting technology, are investigated individually on their rT..t'llanical properties. The results of ne-cural strength, impact strensttl, compressive strength, hardness values and wear rate of the composites show that the addition of SiCp, leads to the increase of the compressive strength and hardness values at both room and higher temperature, and wear resistance of the materials, accompanying with the slight decrease of the fie-cural strength and sharp reduction of the impacttoughness. The factors affecting the mechanical properties of the composites are discussed in the paper. 展开更多
关键词 metal matrix composite zinc alloy sic particle rheological casting technology mechanical properties
下载PDF
Investigation on the Novel High-performance Copper/Graphene Composite Conductor for High Power Density Motor
10
作者 Jiaxiao Wang Tingting Zuo +10 位作者 Jiangli Xue Yadong Ru Yue Wu Zhuang Xu Yongsheng Liu Zhaoshun Gao Puqi Ning Tao Fan Xuhui Wen Li Han Liye Xiao 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期80-85,共6页
High-performance Cu/Graphene composite wire synergistically strengthened by nano Cr_(3)C_(2) phase was directly synthesized via hot press sintering followed by severe cold plastic deformation, using liquid paraffin an... High-performance Cu/Graphene composite wire synergistically strengthened by nano Cr_(3)C_(2) phase was directly synthesized via hot press sintering followed by severe cold plastic deformation, using liquid paraffin and CuCr alloy powder as the raw materials. Since graphene is in situ formed under the catalysis of copper powder during the sintering process, the problem that graphene is easy to agglomerate and difficult to disperse uniformly in the copper matrix has been solved. The nano Cr_(3)C_(2)-particles nailed at the interface favor to improve the interface bonding. The Cu/Graphene composite possesses high electrical conductivity, hardness, and plasticity. The composite wire exhibits high electrical conductivity of 96.93% IACS, great tensile strength of 488MPa, and excellent resistance to softening. Even after annealing at 400℃ for 1 h, the tensile strength can still reach 268 MPa with a conductivity of about 99.14% IACS.The wire's temperature coefficient of resistance(TCR) is largely reduced to 0.0035/℃ due to the complex structure,which leads the wire to present low resistivity at higher temperatures. Such Cu/Graphene composite wire with excellent comprehensive performance has a good application prospect in high-power density motors. 展开更多
关键词 cu/Graphene composite Mechanical properties Electrical property Microstructure Temperature coefficient of resistance
下载PDF
Electromagnetic wave absorption and mechanical properties of SiC nanowire/low-melting-point glass composites sintered at 580°C in air 被引量:1
11
作者 Ranran Shi Wei Lin +5 位作者 Zheng Liu Junna Xu Jianlei Kuang Wenxiu Liu Qi Wang Wenbin Cao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2023年第9期1809-1815,共7页
Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix comp... Si C nanowires are excellent high-temperature electromagnetic wave (EMW) absorbing materials. However, their polymer matrix composites are difficult to work at temperatures above 300℃, while their ceramic matrix composites must be prepared above 1000℃ in an inert atmosphere. Thus, for addressing the abovementioned problems, SiC/low-melting-point glass composites were well designed and prepared at 580℃ in an air atmosphere. Based on the X-ray diffraction results, SiC nanowires were not oxidized during air atmosphere sintering because of the low sintering temperature. Additionally, SiC nanowires were uniformly distributed in the glass matrix material. The composites exhibited good mechanical and EMW absorption properties. As the filling ratio of SiC nanowires increased from 5wt%to 20wt%, the Vickers hardness and flexural strength of the composite reached HV 564 and 213 MPa, which were improved by 27.7%and 72.8%, respectively, compared with the low-melting-point glass. Meanwhile, the dielectric loss and EMW absorption ability of SiC nanowires at 8.2–12.4 GHz were also gradually improved. The dielectric loss ability of low-melting-point glass was close to 0. However, when the filling ratio of SiC nanowires was 20wt%, the composite showed a minimum reflection loss (RL) of-20.2 dB and an effective absorption (RL≤-10 dB) bandwidth of2.3 GHz at an absorber layer thickness of 2.3 mm. The synergistic effect of polarization loss and conductivity loss in SiC nanowires was responsible for this improvement. 展开更多
关键词 sic nanowires glass composite flexural strength dielectric properties microwave absorption
下载PDF
Damping performance of SiC nanoparticles reinforced magnesium matrix composites processed by cyclic extrusion and compression 被引量:1
12
作者 Mahmoud Ebrahimi Li Zhang +2 位作者 Qudong Wang Hao Zhou Wenzhen Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第5期1608-1617,共10页
This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC pro... This work dealt with the damping performance and its underlying mechanism in SiC nanoparticles reinforced AZ91D composite(SiC_(np)/AZ91D)processed by cyclic extrusion and compression(CEC).It was found that the CEC process significantly affects the damping performance of the composite due to alterations in the density of dislocations and grain boundaries in the matrix alloy.Although there would be dynamic precipitation of the Mg17Al12 phase during processing which increases the phase interface and limits the mobility of dislocations and grain boundaries.The results also showed that the damping capacity of 1%SiC_(np)/AZ91D composite continuously decreases with adding CEC pass number and it consistently increases with rising the applied temperature.Considering the first derivative of the tanδ-T curve,the dominant damping mechanism based on test temperature can be divided into three regions.These three regions are as follows(i)dislocation vibration of the weak pinning points(≤T_(cr)),(ii)dislocation vibration of the strong pinning points(T_(cr)∼T_(V)),and(iii)grain boundary/interface sliding(≥T_(V)) 展开更多
关键词 Metal matrix composite sic nanoparticles Severe plastic deformation Temperature-dependent damping curves Damping mechanism
下载PDF
Microstructures and mechanical properties of 2024Al/Gr/SiC hybrid composites fabricated by vacuum hot pressing 被引量:3
13
作者 胡程进 严红革 +1 位作者 陈吉华 苏斌 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第5期1259-1268,共10页
The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effe... The 2024Al/Gr/SiC hybrid composite plates with 5%-10% SiC particles (volume fraction) and 3%-6% flaky graphite (Gr) (volume fraction) were fabricated by vacuum hot pressing and hot extrusion processing. The effects of SiC and Gr on the microstructures and mechanical properties of the composites aged at 160, 175 and 190℃ were studied by optical microscopy, scanning electron microscopy (SEM), and hardness and tensile tests. The results indicate that the SiC particles have a more obvious effect on accelerating the aging response as compared with the Gr. Both the tensile strength and elongation are reduced by the Gr and SiC particles added into the matrix, while the Gr has a more negative influence on the elongation than the SiC particles. The tensile strength (ab), yield stress (as) and elongation (δ) of the 2024Al/3Gr/10SiC composite aged at 165℃ for 8 h are 387 MPa, 280.3 MPa and 5.7%, respectively. The hybrid composites are characterized by ductile fracture, which is associated with the ductile fracture of the matrix and the tearing of the interface between the matrix and the particles. 展开更多
关键词 2024Al/Gr/sic composites vacuum hot pressing micros^tructure mechanical property heat treatment
下载PDF
Effects of Co_(2)O_(3)Addition on Microstructure and Properties of SiC Composite Ceramics for Solar Absorber and Storage
14
作者 ZHOU Yang WU Jianfeng +3 位作者 TIAN Kezhong XU Xiaohong MA Sitong LIU Shaoheng 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2023年第6期1269-1277,共9页
SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum ... SiC composite ceramics for solar absorber and storage integration are new concentrating solar power materials.SiC composite ceramics for solar absorber and storage integration were fabricated using SiC,black corundum and kaolin as the raw materials,Co_(2)O_(3)as the additive via pressureless graphite-buried sintering method in this study.Influences of Co_(2)O_(3)on the microstructure and properties of SiC composite ceramics for solar absorber and storage integration were studied.The results indicate that sample D2(5wt%Co_(2)O_(3))sintered at 1480℃exhibits optimal performances for 119.91 MPa bending strength,93%solar absorption,981.5 kJ/kg(25-800℃)thermal storage density.The weight gain ratio is 12.58 mg/cm2after 100 h oxidation at 1000℃.The Co_(2)O_(3)can decrease the liquid phase formation temperature and reduce the viscosity of liquid phase during sintering.The liquid with low viscosity not only promotes the elimination of pores to achieve densification,but also increases bending strength,solar absorption,thermal storage density and oxidation resistance.A dense SiO_(2) layer was formed on the surface of SiC after 100 h oxidation at 1000℃,which protects the sample from further oxidation.However,excessive Co_(2)O_(3)will make the microstructure loose,which is disadvantageous to the performances of samples. 展开更多
关键词 sic composite ceramics Co_(2)O_(3) microstructure solar absorption thermal storage density
下载PDF
Microstructure and mechanical properties of SiC-particle-strengthening tri-metal Al/Cu/Ni composite produced by accumulative roll bonding process 被引量:5
15
作者 Moslem Tayyebi Beitallah Eghbali 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第3期357-364,共8页
In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this co... In this study, a multilayer Al/Ni/Cu composite reinforced with Si C particles was produced using an accumulative roll bonding(ARB) process with different cycles. The microstructure and mechanical properties of this composite were investigated using optical and scanning microscopy and hardness and tensile testing. The results show that by increasing the applied strain, the Al/Ni/Cu multilayer composite converted from layer features to near a particle-strengthening characteristic. After the fifth ARB cycle, a composite with a uniform distribution of reinforcements(Cu, Ni, and SiC) was fabricated. The tensile strength of the composite increased from the initial sandwich structure to the first ARB cycle and then decreased from the first to the third ARB cycle. Upon reaching five ARB cycles, the tensile strength of the composite increased again. The variation in the elongation of the composite exhibited a tendency similar to that of its tensile strength. It is observed that with increasing strain, the microhardness values of the Al, Cu, and Ni layers increased, and that the dominant fracture mechanisms of Al and Cu were dimple formation and ductile fracture. In contrast, brittle fracture in specific plains was the main characteristic of Ni fractures. 展开更多
关键词 ACcuMULATIVE ROLL BONDING Al/Ni/cu/sic composite silicon CARBIDE particles microstructure mechanical properties
下载PDF
Thermal expansion and mechanical properties of high reinforcement content SiC_(p)/Cu composites fabricated by squeeze casting technology 被引量:5
16
作者 陈国钦 修子扬 +2 位作者 孟松鹤 武高辉 朱德志 《中国有色金属学会会刊:英文版》 CSCD 2009年第S3期600-604,共5页
High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores... High reinforcement content SiCp/Cu composites (φp=50%, 55% and 60%) for electronic packaging applications were fabricated by patent cost-effective squeeze-casting technology. The composites appear to be free of pores, and the SiC particles are distribute uniformly in the composites. The mean linear coefficients of thermal expansion (CTEs, 20-100 ℃ ) of as-cast SiCp/Cu composites range from 8.8×10-6 ℃-1 to 9.9×10-6 ℃-1 and decrease with the increase of SiC content. The experimental CTEs of as-cast SiCp/Cu composites agree well with the predicted values based on Kerner model. The CTEs of composites reduce after annealing treatment due to the fact that the internal stress of the composite is released. The Brinell hardness increases from 272.3 to 313.2, and the modulus increases from 186 GPa to 210 GPa for the corresponding composites. The bending strength is larger than 374 MPa, but no obvious trend between bending strength and SiCp content is observed. 展开更多
关键词 sicP/cu compositeS electronic packaging thermal EXPANSION COEFFICIENT MECHANICAL properties
下载PDF
Research on the Characters of the Cutting Force in Vibration Cutting Particle Reinforced Metal Matrix Composites SiC_p/Al 被引量:3
17
作者 LIU Chuan-shao 1, ZHAO Bo 1,2, GAO Guo-fu 1, JIAO F eng 1 (1. Department of Mechanical Engineering, Jiaozuo Institute of Techno logy, Henan 454000, China 2. Institute of Mechanical Engineering, Shanghai Jiaotong University, Shanghai 200030, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期74-75,共2页
In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning com... In this paper, turning experiments of machining particle reinforced metal matri x composites(PRMMCs) SiC p/Al with PCD tools have been carried out. The cutting force characteristics in ultrasonic vibration turning compared with that in com mon turning were studied. Through the single factor experiments and multiple fac tor orthogonal experiments, the influences of three kinds of cutting conditions such as cutting velocity, amount of feed and cutting depth on cutting force were analyzed in detail. Meanwhile, according to the experimental data, the empirica l formula of main cutting force in ultrasonic vibration turning was conclude d. According to the test results, the cutting force is direct proportion to cutt ing depth basically according to the relation between cutting force and other fa ctors, which is similar to that of common cutting, so is the feed rate, but the influence is not so big. The influence of cutting speed is larger than that of f eed rate on cutting force because the efficient cutting time increases in vibrat ion cycle with the increase of cutting speed, which causes cutting force to incr ease. The research results indicate: (1) Ultrasonic vibration turning possesses much lower main cutting force than that in common turning when adopting smaller cutting parameters. If using larger cutting parameters, the difference will inco nspicuous. (2) There are remarkable differences of cutting force-cutting veloci ty characteristics in ultrasonic vibration turning from that in common turning m ainly because built-up edge does not emerge in ultrasonic turning unlike common turning in corresponding velocity range. (3) In ultrasonic vibration cutting, t he influence of cutting velocity on cutting force is most obvious among thre e cutting parameters and the influence of feed is smallest. So adopting lower cu tting velocity and larger cutting depth not only can reduce cutting force effect ively but also can ensure cutting efficiency. (4) The conclusions are useful in precision and super precision manufacturing thin-wall pieces. 展开更多
关键词 composite sic p/Al PCD tool ultrasonic vibrati on turning cutting force
下载PDF
Microstructure,mechanical properties and wear resistance of SiC_(p)/AZ91 composite prepared by vacuum pressure infiltration 被引量:5
18
作者 Zhi-ping GUAN Ming-yu LI +5 位作者 Kai-xin XIA Zhi-gang LI Dan GAO Po ZHAO Pin-kui MA Jia-wang SONG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第1期104-121,共18页
SiC_(p)/AZ91 composites were prepared by vacuum pressure infiltration.The microstructure,mechanical properties and wear resistance of composite were studied.Results indicated that SiC particles were uniformly distribu... SiC_(p)/AZ91 composites were prepared by vacuum pressure infiltration.The microstructure,mechanical properties and wear resistance of composite were studied.Results indicated that SiC particles were uniformly distributed in the metal matrix and had a good interface bonding with the metal matrix.Mg_(17)Al_(12) preferably precipitated near the SiC particles,and high-density dislocations were induced by the mismatch of the coefficient of thermal expansion(CTE)between the SiC particle and the AZ91 matrix,thereby accelerating the aging precipitation of the matrix.Compared with AZ91 alloy,the addition of SiC particles improves the hardness and compressive strength of the composite,which is mainly due to the load transfer strengthening and grain refinement strengthening mechanisms.Furthermore,a stable support surface-protecting matrix formed during the wear process because of the excellent wear resistance of SiC. 展开更多
关键词 magnesium matrix composites sic particle vacuum pressure infiltration aging behavior WEAR
下载PDF
Vacuum brazing of Si/SiC ceramic composite and Invar alloy using TiSOCu-W filler metals 被引量:2
19
作者 张华 黄继华 +2 位作者 张志远 赵兴科 陈树海 《China Welding》 EI CAS 2012年第1期76-80,共5页
Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed ... Si/SiC ceramic composite and lnvar alloy were successfidly joined by vacuum brazing using Ti5OCu-W filler metals into which W was added to release the thermal stress of the brazed joint. Microstructures of the brazed joints were irwestigated by scanning electron micrascope (SEM) and energy dispersive spectrometer (EDS). The mechanical properties of the brazed joints were measured by shearing tests. The results showed that the brazed joints were composed of Ti-Cu phase, W phase and Ti-Si phase. W had no effect on the wettability and mobility of the .filler metals. The growth of Ti2 Cu phase was restrained, and the reaction between ceramic composite and filler metals was weakened. The specimen, brazed at 970°C for 5 rain, had the maximum shear strength of 108 MPa at room temperature. 展开更多
关键词 Si/sic ceramic composite lnvar alloy BRAZING Ti50cu-W filler metals
下载PDF
INFLUENCES OF VACUUM-BAKING TREATMENT TO SiC PARTICULATES ON PREPARING AI-MATRIX COMPOSITE 被引量:1
20
作者 Ding, Wenjiang Xu, Xiaoping Deng, Zuwei Shanghai Jiaotong University, Shanghai 200030, China 《中国有色金属学会会刊:英文版》 CSCD 1993年第3期93-95,共3页
A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have bee... A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have been investigated, it is found that gases and pollutants absorbed on the surface prohibit SiC particulates from uniformly dispersing in the alloy melt. 展开更多
关键词 composite material sic particulate surface TREATMENT absorption vacuum-baking
下载PDF
上一页 1 2 243 下一页 到第
使用帮助 返回顶部