Strain-relaxed SiGe virtual substrates are of great importance for fabricating strained Si materials. Instead of using graded buffer method to obtain fully relaxed SiGe film, in this study a new method to obtain relax...Strain-relaxed SiGe virtual substrates are of great importance for fabricating strained Si materials. Instead of using graded buffer method to obtain fully relaxed SiGe film, in this study a new method to obtain relaxed SiGe film and strained Si film with much thinner SiGe film was proposed. Almost fully relaxed thin SiGe buffer layer was obtained by Si/SiGe/Si multi-structure oxidation and the SiO2 layer removing before SiGe regrowth. Raman spectroscopy analysis indicates that the regrown SiGe film has a strain relaxation ratio of about 93% while the Si cap layer has a strain of 0.63%. AFM shows good surface roughness. This new method is proved to be a useful approach to fabricate thin relaxed epilayers and strain Si films.展开更多
基金This project was financially supported by the National Natural Science Foundation of China(No.60476017).
文摘Strain-relaxed SiGe virtual substrates are of great importance for fabricating strained Si materials. Instead of using graded buffer method to obtain fully relaxed SiGe film, in this study a new method to obtain relaxed SiGe film and strained Si film with much thinner SiGe film was proposed. Almost fully relaxed thin SiGe buffer layer was obtained by Si/SiGe/Si multi-structure oxidation and the SiO2 layer removing before SiGe regrowth. Raman spectroscopy analysis indicates that the regrown SiGe film has a strain relaxation ratio of about 93% while the Si cap layer has a strain of 0.63%. AFM shows good surface roughness. This new method is proved to be a useful approach to fabricate thin relaxed epilayers and strain Si films.