Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effe...Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.展开更多
The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the Ca...The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the CaO/SiO_(2)slag mass ratio(C/S ratio)on the dissolution rate of alumina-based refractory ceramics was investigated.The results indicate that the dissolution rate increases with an increase of the C/S ratio and is mainly controlled by diffusion.During the early stage of dissolution,for all C/S ratios,the dissolution process conforms to the classical invariant interface approximation model.During the later stage of dissolution,when the C/S ratio is≥6,the dissolution process is significantly different from the model above because of the formation of a thick interfacial layer,which can be explained by dissolution kinetics.展开更多
基金the National Natural Science Foundation of China(Nos.22209095 and 22238004).
文摘Progress in the fast charging of high-capacity silicon monoxide(SiO)-based anode is currently hindered by insufficient conductivity and notable volume expansion.The construction of an interface conductive network effectively addresses the aforementioned problems;however,the impact of its quality on lithium-ion transfer and structure durability is yet to be explored.Herein,the influence of an interface conductive network on ionic transport and mechanical stability under fast charging is explored for the first time.2D modeling simulation and Cryo-transmission electron microscopy precisely reveal the mitigation of interface polarization owing to a higher fraction of conductive inorganic species formation in bilayer solid electrolyte interphase is mainly responsible for a linear decrease in ionic diffusion energy barrier.Furthermore,atomic force microscopy and Raman shift exhibit substantial stress dissipation generated by a complete conductive network,which is critical to the linear reduction of electrode residual stress.This study provides insights into the rational design of optimized interface SiO-based anodes with reinforced fast-charging performance.
基金supported by the National Natural Science Foundation of China(52272022)the Special Project of Central Government for Local Science and Technology Development of Hubei Province(2019ZYYD076)the Innovation and Entrepreneurship Fund of Wuhan University of Science and Technology(D202202171045002669).
文摘The dissolution of alumina-based refractory ceramics in CaO-Al2O3-SiO_(2)slag melts was performed based on the in-situ observation system of an ultra-high-temperature laser confocal microscope,and the effect of the CaO/SiO_(2)slag mass ratio(C/S ratio)on the dissolution rate of alumina-based refractory ceramics was investigated.The results indicate that the dissolution rate increases with an increase of the C/S ratio and is mainly controlled by diffusion.During the early stage of dissolution,for all C/S ratios,the dissolution process conforms to the classical invariant interface approximation model.During the later stage of dissolution,when the C/S ratio is≥6,the dissolution process is significantly different from the model above because of the formation of a thick interfacial layer,which can be explained by dissolution kinetics.