Calcium stabilized nitrogen rich sialon ceramics having a general formula of Ca_(x)Si_(12-2x)Al_(2x)N_(16) with x value(x is the solubility of cation Ca in α-sialon structure)in the range of 0.2-2.2 for compositions ...Calcium stabilized nitrogen rich sialon ceramics having a general formula of Ca_(x)Si_(12-2x)Al_(2x)N_(16) with x value(x is the solubility of cation Ca in α-sialon structure)in the range of 0.2-2.2 for compositions lying along the Si_(3)N_(4):1/2Ca_(3)N_(2):3AlN line were synthesized using nano/submicron size starting powder precursors and spark plasma sintering(SPS)technique.The development of calcium stabilized nitrogen rich sialon ceramics at a significantly low sintering temperature of 1500℃(typically reported a temperature of 1700℃ or greater)remains to be the highlight of the present study.The SPS processed sialons were characterized for their microstructure,phase and compositional analysis,and physical and mechanical properties.Furthermore,a correlation was developed between the lattice parameters and the content(x)of the alkaline metal cation in the α-sialon phase.Well-densified single-phase nitrogen rich α-sialon ceramics were achieved in the range of 0.53(3)≤x≤1.27(3).A nitrogen richα-sialon sample possessing a maximum hardness of 22.4 GPa and fracture toughness of 6.1 MPa·m^(1/2) was developed.展开更多
In situ formed low density O'-sialon-based multiphase ceramics were prepared by liquid-phase sintering method at 1400°C with Si3N4, SiO2 and Al2O3 as raw materials.Crystalline phases were identified by X-ray dif...In situ formed low density O'-sialon-based multiphase ceramics were prepared by liquid-phase sintering method at 1400°C with Si3N4, SiO2 and Al2O3 as raw materials.Crystalline phases were identified by X-ray diffraction(XRD).The quantitative phase analysis was finished by matrix-flushing method and the substitution parameter x value of O'-sialon was estimated.The effects of sintering additives on the phase composition of the material were studied.The results show that, when using Y2O3 alone, Al6Si2O13 phase can be formed in the material, but when using Y2O3 and MgO, MgAl2O4 phase can be preferentially formed and the Al6Si2O13 is not observed.The mechanical properties of the material were measured and the relationships between microstructure and mechanical properties were discussed.The sample with Y2O3 and MgO sintering additives, using fused quartz alone as SiO2 source, displays a combination of high bending strength(163 MPa) and good fracture toughness(3.11 MPa·m1/2).Bending strength and fracture toughness of the samples increase with the increase of the content and aspect ratio of elongated grains and decrease with the increase of the porosity.展开更多
The tribological properties of Sialon sliding against AISI52100 steel ball under the lubrication of solid particle additives, as micro-borate particle and nano-PbS particle, were evaluated by a SRV ball-on-disc test r...The tribological properties of Sialon sliding against AISI52100 steel ball under the lubrication of solid particle additives, as micro-borate particle and nano-PbS particle, were evaluated by a SRV ball-on-disc test rig. The chemical composition of the worn surface was characterized by X-ray photoelectron spectroscopy (XPS). The morphologies of the worn surfaces of Sialon were analyzed by scanning electron microscopy (SEM). The results show that the particles can reduce the friction coefficient of the pairs and the wear volume of Sialon significantly. The wear resistance of micro-borate is superior to that of nano-PbS while the friction-reducing ability of PbS is better than that of borate. According to the XPS and SEM results, the wear resistance of PbS is mainly depended on the tribochemical film mainly composed of PbSO 4, which deposited on the worn surface with good bonding strength. No tribochemical reaction or deposited film was detected or observed on the worn surface of Sialon under the lubrication of borate, indicating that the possible physically deposited film generated from micro particle can also greatly reduce the wear volume of Sialon, though the friction reducing ability of which is inferior to that of nano PbS particle.展开更多
基金the support provided by both King Fahd University of Petroleum and Minerals,Saudi Arabia,and the University of Sharjah,United Arab Emirates
文摘Calcium stabilized nitrogen rich sialon ceramics having a general formula of Ca_(x)Si_(12-2x)Al_(2x)N_(16) with x value(x is the solubility of cation Ca in α-sialon structure)in the range of 0.2-2.2 for compositions lying along the Si_(3)N_(4):1/2Ca_(3)N_(2):3AlN line were synthesized using nano/submicron size starting powder precursors and spark plasma sintering(SPS)technique.The development of calcium stabilized nitrogen rich sialon ceramics at a significantly low sintering temperature of 1500℃(typically reported a temperature of 1700℃ or greater)remains to be the highlight of the present study.The SPS processed sialons were characterized for their microstructure,phase and compositional analysis,and physical and mechanical properties.Furthermore,a correlation was developed between the lattice parameters and the content(x)of the alkaline metal cation in the α-sialon phase.Well-densified single-phase nitrogen rich α-sialon ceramics were achieved in the range of 0.53(3)≤x≤1.27(3).A nitrogen richα-sialon sample possessing a maximum hardness of 22.4 GPa and fracture toughness of 6.1 MPa·m^(1/2) was developed.
文摘In situ formed low density O'-sialon-based multiphase ceramics were prepared by liquid-phase sintering method at 1400°C with Si3N4, SiO2 and Al2O3 as raw materials.Crystalline phases were identified by X-ray diffraction(XRD).The quantitative phase analysis was finished by matrix-flushing method and the substitution parameter x value of O'-sialon was estimated.The effects of sintering additives on the phase composition of the material were studied.The results show that, when using Y2O3 alone, Al6Si2O13 phase can be formed in the material, but when using Y2O3 and MgO, MgAl2O4 phase can be preferentially formed and the Al6Si2O13 is not observed.The mechanical properties of the material were measured and the relationships between microstructure and mechanical properties were discussed.The sample with Y2O3 and MgO sintering additives, using fused quartz alone as SiO2 source, displays a combination of high bending strength(163 MPa) and good fracture toughness(3.11 MPa·m1/2).Bending strength and fracture toughness of the samples increase with the increase of the content and aspect ratio of elongated grains and decrease with the increase of the porosity.
基金FundedbytheNationalNaturalScienceFoundationofChi na (No .30 30 0 0 78)
文摘The tribological properties of Sialon sliding against AISI52100 steel ball under the lubrication of solid particle additives, as micro-borate particle and nano-PbS particle, were evaluated by a SRV ball-on-disc test rig. The chemical composition of the worn surface was characterized by X-ray photoelectron spectroscopy (XPS). The morphologies of the worn surfaces of Sialon were analyzed by scanning electron microscopy (SEM). The results show that the particles can reduce the friction coefficient of the pairs and the wear volume of Sialon significantly. The wear resistance of micro-borate is superior to that of nano-PbS while the friction-reducing ability of PbS is better than that of borate. According to the XPS and SEM results, the wear resistance of PbS is mainly depended on the tribochemical film mainly composed of PbSO 4, which deposited on the worn surface with good bonding strength. No tribochemical reaction or deposited film was detected or observed on the worn surface of Sialon under the lubrication of borate, indicating that the possible physically deposited film generated from micro particle can also greatly reduce the wear volume of Sialon, though the friction reducing ability of which is inferior to that of nano PbS particle.