For the anti-interference/denoise purpose,it usually requires minimizing the sidelobe level(SLL)of a wide-beam pattern with a desired low nulling level(NL)in the nulling region.To realize such an objective,the shaped-...For the anti-interference/denoise purpose,it usually requires minimizing the sidelobe level(SLL)of a wide-beam pattern with a desired low nulling level(NL)in the nulling region.To realize such an objective,the shaped-beam pattern synthesis(SBPS)is the most commonly used approach.However,since the SBPS problem focuses on synthesizing a predetermined beam shape,the minimum SLL via this approach cannot ensure to obtain the maximum power gain.Conversely,it cannot obtain the lowest SLL with a certain power gain requirement.Based on such consideration,this paper tries to further minimize SLL of a wide-beam pattern with a desired low NL nulling region,by solving the power gain pattern synthesis(PGPS)problem.The PGPS problem selects the array excitation by directly optimizing the power gain.Hence,it has the potential to reduce SLL,when achieving the equal mainlobe power gain constraint via SBPS.An iterative algorithm which converts the primal optimization problem into convex sub-problems is proposed,resulting in an effective problem-solving scheme.Numerical simulations demonstrate the proposed algorithm can obtain about 10-dB lower SLL than the existing algorithms.展开更多
This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to reali...This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.展开更多
Worldwide Interoperability for Microwave Access(WiMAX)trusts Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM)combination for the deployment of physical layer functions and for conne...Worldwide Interoperability for Microwave Access(WiMAX)trusts Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM)combination for the deployment of physical layer functions and for connecting the medium access control to the wireless media.Even though Orthogonal Frequency Division Multiplexing(OFDM)facilitates reliable digital broadband transmission in the fading wireless channels,the presence of synchro-nization errors in the form of Carrier Frequency Offset(CFO)and Time Offset(TO)adversely affect the performance of OFDM based physical layers.The objective of this work is to improve the accuracy of the frequency and the time offset estimation in the WiMAX physical layer.A method to enhance the synchro-nization accuracy byfine-tuning the merit factor of the preamble sequence is sug-gested in this paper.Also,a new preamble with improved synchronization accuracy is proposed for the WiMAX system.The performance of the proposed preamble is evaluated in a Rayleigh fading channel and the results of simulations show that the Mean Square Error(MSE)in offset estimation is significantly reduced and it outperforms the standard WiMAX preamble.展开更多
The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m s...The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m series to do non-coherent integration. It is indicated that the power in- creasing times of larger target sidelobe is less than the power increasing times of smaller target main- lobe because of the larger target' s pseudo-randomness. Smaller target is integrated from larger tar- get sidelobe, which strengthens the detection capability of radar for smaller targets. According to the sidelobes distributing characteristic, a method is presented in this paper to remove the estimated sidelobes mean value for signal detection after non-coherent integration. Simulation results present that the SNR of small target can be improved approximately 6. 5 dB by the proposed method.展开更多
In symmetrical thinned linear arrays design, the positions of thinned array elements are very important for optimal performance in terms of its minimum peak side lobe level (Msli). For the synthesis of thinned array...In symmetrical thinned linear arrays design, the positions of thinned array elements are very important for optimal performance in terms of its minimum peak side lobe level (Msli). For the synthesis of thinned arrays with a given thinning rate, it would have almost the same Msll solution between taking only segmental aperture nearby both ends of the aperture into account and taking all the aperture into account. In this paper, the element distribution characteristic over the aperture of many optimum thinned arrays is studied, then the aperture release model is founded by the least square method to synthesize the thinned arrays. This model is vital for the computing burden alleviation and the efficiency optimization, and would hardly bring any degradation of the obtained array performance.展开更多
Purpose-The purpose of this paper is to propose radiating system by avoiding electromagnetic interference in unwanted directions and to radiate the energy in the required direction with an optimization technique.Desig...Purpose-The purpose of this paper is to propose radiating system by avoiding electromagnetic interference in unwanted directions and to radiate the energy in the required direction with an optimization technique.Design/methodology/approach-Practically,multiple,incompatible variables require concurrent boost on a synthesis of systematic antenna assemblage.The authors have worked out the main statistic penalty function to ensure all the restrictions.Here,MBPSO(Modified Binary Particle Swarm Optimization)is developed and introduced thin planar synthesis restriction.The sigmoid function is used to update the particle position.Different analytical demonstrations have been carried out,and the exhibited methods are predominant than the algorithms.Findings-A 20310 planar antenna array is synthesized using modified BPSO.The authors have suppressed the PSLL in two principal planes and as well as in the entire f plane.Numerical results state that MBPSO outperforms the other binary BPSO,BCSO,ACO,RGA,GAoptimization techniques.MBPSO achieved a51.84 dB PSLL level,whereas BPSO achieved48.57 dB with the same 50%thinning.Originality/value-Planar array antenna formation is one of the most complex syntheses because the array gets filled with more antenna elements.The machine-like complication and implementation of such an antenna arrangement with a broad opening would be expensive.It is not easy to control the required radiation patterns shape by using a uniform feeding network.To get better flexibility for sustaining the sidelobe levelheaded along with consistent amplitude distribution.So as far as prominence has been given to the evolutionary algorithm,find an ideal solution for objective array combinational problems.展开更多
With a goal to optimize the element positions to reduce the peak sidelobe level (PSLL) of the array pattern, a modified real Genetic Algorithms (MGA) for the synthesis of sparse linear arrays is described. The mul...With a goal to optimize the element positions to reduce the peak sidelobe level (PSLL) of the array pattern, a modified real Genetic Algorithms (MGA) for the synthesis of sparse linear arrays is described. The multiple optimization constrains include the number of elements, the aperture and the minimum element spacing. The advanced new approach reduces the size of the searching area of GA by means of indirect description of chromosome and avoids infeasible solution during the optimization process by designing the new genetic operators. The elementary steps of MGA are presented. The simulated results confirm the great efficiency and the robustness of this algorithm.展开更多
In this paper,a new correlated covariance matrix for Multi-Input Multi-Output(MIMO)radar is proposed,which has lower Side Lobe Levels(SLLs)compared to the new covariance matrix designs and the well-known multi-antenna...In this paper,a new correlated covariance matrix for Multi-Input Multi-Output(MIMO)radar is proposed,which has lower Side Lobe Levels(SLLs)compared to the new covariance matrix designs and the well-known multi-antenna radar designs including phased-array,MIMO radar and phased-MIMO radar schemes.It is shown that Binary Phased-Shift Keying(BPSK)waveforms that have constant envelope can be used in a closed-form to realize the proposed covariance matrix.Therefore,there is no need to deploy different types of radio amplifiers in the transmitter which will reduce the cost,considerably.The proposed design allows the same transmit power from each antenna in contrast to the phased-MIMO radar.Moreover,the proposed covariance matrix is full-rank and has the same capability as MIMO radar to identify more targets,simultaneously.Performance of the proposed transmit covariance matrix including receive beampattern and output Signal-to-Interference plus Noise Ratio(SINR)is simulated,which validates analytical results.展开更多
基金supported by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0564the National Natural Science Foundation of China under Grants No.U20B2043 and No.62001095.
文摘For the anti-interference/denoise purpose,it usually requires minimizing the sidelobe level(SLL)of a wide-beam pattern with a desired low nulling level(NL)in the nulling region.To realize such an objective,the shaped-beam pattern synthesis(SBPS)is the most commonly used approach.However,since the SBPS problem focuses on synthesizing a predetermined beam shape,the minimum SLL via this approach cannot ensure to obtain the maximum power gain.Conversely,it cannot obtain the lowest SLL with a certain power gain requirement.Based on such consideration,this paper tries to further minimize SLL of a wide-beam pattern with a desired low NL nulling region,by solving the power gain pattern synthesis(PGPS)problem.The PGPS problem selects the array excitation by directly optimizing the power gain.Hence,it has the potential to reduce SLL,when achieving the equal mainlobe power gain constraint via SBPS.An iterative algorithm which converts the primal optimization problem into convex sub-problems is proposed,resulting in an effective problem-solving scheme.Numerical simulations demonstrate the proposed algorithm can obtain about 10-dB lower SLL than the existing algorithms.
文摘This paper proposes a three-dimensional (3-D) amplitude tapering technique on volumetric random arrays to minimize array sidelobes and emulate phased array operations on mobile platforms. Our ultimate goal is to realize wireless phased array applications carried out by mobile platforms;in this paper, we focus on the development of collaborative beamforming algorithms. This beamshaping technique mitigates the discontinuity of the current distribution along the array aperture and lower array sidelobe level (SLL) by specially paying attention to the array element’s depth deviation. In this work, step by step amplitude tapering procedures are clearly illustrated. Further, a reconfigurable phased array with sixteen patch antennas is tested to verify the fidelity of the 3-D beamshaping algorithm. Measured and simulated radiation patterns are benchmarked to evaluate the sidelobe suppression results, and the best sidelobe suppressed region is around the array’s main beam.
文摘Worldwide Interoperability for Microwave Access(WiMAX)trusts Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM)combination for the deployment of physical layer functions and for connecting the medium access control to the wireless media.Even though Orthogonal Frequency Division Multiplexing(OFDM)facilitates reliable digital broadband transmission in the fading wireless channels,the presence of synchro-nization errors in the form of Carrier Frequency Offset(CFO)and Time Offset(TO)adversely affect the performance of OFDM based physical layers.The objective of this work is to improve the accuracy of the frequency and the time offset estimation in the WiMAX physical layer.A method to enhance the synchro-nization accuracy byfine-tuning the merit factor of the preamble sequence is sug-gested in this paper.Also,a new preamble with improved synchronization accuracy is proposed for the WiMAX system.The performance of the proposed preamble is evaluated in a Rayleigh fading channel and the results of simulations show that the Mean Square Error(MSE)in offset estimation is significantly reduced and it outperforms the standard WiMAX preamble.
基金Supported by the National Natural Science Foundation of China(Youth Science Fund)(61001190)
文摘The m series with 511 bits is taken as an example being applied in non-coherent integra- tion algorithm. A method to choose the bi-phase code is presented, which is 15 kinds of codes are picked out of 511 kinds of m series to do non-coherent integration. It is indicated that the power in- creasing times of larger target sidelobe is less than the power increasing times of smaller target main- lobe because of the larger target' s pseudo-randomness. Smaller target is integrated from larger tar- get sidelobe, which strengthens the detection capability of radar for smaller targets. According to the sidelobes distributing characteristic, a method is presented in this paper to remove the estimated sidelobes mean value for signal detection after non-coherent integration. Simulation results present that the SNR of small target can be improved approximately 6. 5 dB by the proposed method.
基金supported by the National Natural Science Fundation of China under Grant No 60702070
文摘In symmetrical thinned linear arrays design, the positions of thinned array elements are very important for optimal performance in terms of its minimum peak side lobe level (Msli). For the synthesis of thinned arrays with a given thinning rate, it would have almost the same Msll solution between taking only segmental aperture nearby both ends of the aperture into account and taking all the aperture into account. In this paper, the element distribution characteristic over the aperture of many optimum thinned arrays is studied, then the aperture release model is founded by the least square method to synthesize the thinned arrays. This model is vital for the computing burden alleviation and the efficiency optimization, and would hardly bring any degradation of the obtained array performance.
文摘Purpose-The purpose of this paper is to propose radiating system by avoiding electromagnetic interference in unwanted directions and to radiate the energy in the required direction with an optimization technique.Design/methodology/approach-Practically,multiple,incompatible variables require concurrent boost on a synthesis of systematic antenna assemblage.The authors have worked out the main statistic penalty function to ensure all the restrictions.Here,MBPSO(Modified Binary Particle Swarm Optimization)is developed and introduced thin planar synthesis restriction.The sigmoid function is used to update the particle position.Different analytical demonstrations have been carried out,and the exhibited methods are predominant than the algorithms.Findings-A 20310 planar antenna array is synthesized using modified BPSO.The authors have suppressed the PSLL in two principal planes and as well as in the entire f plane.Numerical results state that MBPSO outperforms the other binary BPSO,BCSO,ACO,RGA,GAoptimization techniques.MBPSO achieved a51.84 dB PSLL level,whereas BPSO achieved48.57 dB with the same 50%thinning.Originality/value-Planar array antenna formation is one of the most complex syntheses because the array gets filled with more antenna elements.The machine-like complication and implementation of such an antenna arrangement with a broad opening would be expensive.It is not easy to control the required radiation patterns shape by using a uniform feeding network.To get better flexibility for sustaining the sidelobe levelheaded along with consistent amplitude distribution.So as far as prominence has been given to the evolutionary algorithm,find an ideal solution for objective array combinational problems.
基金Supported by National Defense Science and Technology Key Laboratory Foundation Project of China
文摘With a goal to optimize the element positions to reduce the peak sidelobe level (PSLL) of the array pattern, a modified real Genetic Algorithms (MGA) for the synthesis of sparse linear arrays is described. The multiple optimization constrains include the number of elements, the aperture and the minimum element spacing. The advanced new approach reduces the size of the searching area of GA by means of indirect description of chromosome and avoids infeasible solution during the optimization process by designing the new genetic operators. The elementary steps of MGA are presented. The simulated results confirm the great efficiency and the robustness of this algorithm.
文摘In this paper,a new correlated covariance matrix for Multi-Input Multi-Output(MIMO)radar is proposed,which has lower Side Lobe Levels(SLLs)compared to the new covariance matrix designs and the well-known multi-antenna radar designs including phased-array,MIMO radar and phased-MIMO radar schemes.It is shown that Binary Phased-Shift Keying(BPSK)waveforms that have constant envelope can be used in a closed-form to realize the proposed covariance matrix.Therefore,there is no need to deploy different types of radio amplifiers in the transmitter which will reduce the cost,considerably.The proposed design allows the same transmit power from each antenna in contrast to the phased-MIMO radar.Moreover,the proposed covariance matrix is full-rank and has the same capability as MIMO radar to identify more targets,simultaneously.Performance of the proposed transmit covariance matrix including receive beampattern and output Signal-to-Interference plus Noise Ratio(SINR)is simulated,which validates analytical results.