This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describe...This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describes the principle, system configuration and hardware design.展开更多
We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can rand...We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can randomly output the signal in 25 ns. The design is based on true random number generator (TRNG). Considering the electrical connection between the TGC source and the developing trigger electronics, the GFZ connector is used. The experimental results show that the improved TGC simulation signal source can uniformly output the random signal in every channel. The output noise is less than 3 mVrms.展开更多
为提高合成孔径雷达(synthetic aperture radar,SAR)系统对抗转发式欺骗干扰的性能,提出一种基于非线性调频(non-linear frequency modulation,NLFM)信号的正交波形设计与优化技术,结合自主收发策略来优化波形组,使捷变发射的波形相互正...为提高合成孔径雷达(synthetic aperture radar,SAR)系统对抗转发式欺骗干扰的性能,提出一种基于非线性调频(non-linear frequency modulation,NLFM)信号的正交波形设计与优化技术,结合自主收发策略来优化波形组,使捷变发射的波形相互正交,从而达到在复杂环境下抑制转发式欺骗干扰的效果。首先,分析SAR系统转发式欺骗干扰的机理、波形捷变发射方法的合理性和有效性,提出利用正交波形设计进行抗干扰的方法;其次,采用S曲线法和分段函数法产生NLFM信号,基于拉格朗日算法,结合遗传算法对NLFM信号的波形组进行了优化设计;最后,通过仿真实验验证了本文方法设计的优化波形组在SAR系统中对抗转发式欺骗干扰的有效性。结果表明:由分段函数法产生NLFM波形后,在合适的干扰转发时延下,采用拉格朗日遗传算法优化NLFM波形的正交性,改善了波形的主瓣宽度和峰值旁瓣比,增强了捷变波形的正交性,提高了波形质量。展开更多
基金This work was supported by the National Meg-Science Engineering Project of the Chinese Government.
文摘This paper introduces a design of high-precision high-voltage fiber-optic analog sig-nal isolation converter based on the technology of Voltage-to-Frequency (V/F) and Frequency-to-Voltage (F/V) conversion. It describes the principle, system configuration and hardware design.
基金Supported by the State Key Laboratory of Particle Detection and Electronicsthe National Natural Science Foundation of China under Grant No 11375179
文摘We develop an improved design of thin gap chamber (TGC) simulation signal source. To further simulate the feature of TGC detector, a novel thought is proposed. The TGC source has 256 channels. Every channel can randomly output the signal in 25 ns. The design is based on true random number generator (TRNG). Considering the electrical connection between the TGC source and the developing trigger electronics, the GFZ connector is used. The experimental results show that the improved TGC simulation signal source can uniformly output the random signal in every channel. The output noise is less than 3 mVrms.
文摘为提高合成孔径雷达(synthetic aperture radar,SAR)系统对抗转发式欺骗干扰的性能,提出一种基于非线性调频(non-linear frequency modulation,NLFM)信号的正交波形设计与优化技术,结合自主收发策略来优化波形组,使捷变发射的波形相互正交,从而达到在复杂环境下抑制转发式欺骗干扰的效果。首先,分析SAR系统转发式欺骗干扰的机理、波形捷变发射方法的合理性和有效性,提出利用正交波形设计进行抗干扰的方法;其次,采用S曲线法和分段函数法产生NLFM信号,基于拉格朗日算法,结合遗传算法对NLFM信号的波形组进行了优化设计;最后,通过仿真实验验证了本文方法设计的优化波形组在SAR系统中对抗转发式欺骗干扰的有效性。结果表明:由分段函数法产生NLFM波形后,在合适的干扰转发时延下,采用拉格朗日遗传算法优化NLFM波形的正交性,改善了波形的主瓣宽度和峰值旁瓣比,增强了捷变波形的正交性,提高了波形质量。
基金supported by the Construction S&T Project of Department of Transportation of Sichuan Province(Grant No.2023A02,No.2024A04,No.2020A01)the Sichuan Science and Technology Program(Grant No.2022YFG0141)+3 种基金the Research Project of Sichuan Highway Planning,Survey,Design,and Research Institute Ltd.(Grant No.KYXM2021000049,No.KYXM2022000038,No.KYXM202300056)the National Natural Science Foundation of China(41630640)the National Science Foundation of Innovation Research Group(41521002)the National Natural Science Foundation of China(41790445).