Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the trans...Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the transverse length of the object, the position of the object in the imaging system and the transverse size of the light source. Furthermore, the effects of these factors on the SNR are discussed in detail by numerical simulations.展开更多
A generalized approach for narrowband interference (NBI) suppression in direct sequence spread spectrum (DSSS) communication systems using adaptive infinite impulse response (IIR) filter is presented. The excisi...A generalized approach for narrowband interference (NBI) suppression in direct sequence spread spectrum (DSSS) communication systems using adaptive infinite impulse response (IIR) filter is presented. The excision filter coefficients depend on both the jammer power and its instantaneous frequency. The dependency of the filter construction on the jammer power is significant as it allows optimal tradeoff between interference removal and signal distortion by maximizing the receiver signal to noise ratio improvement(SNRI). Instead of traditional adaptive line enhancer (ALE) estimator, a preferable NBI estimator-Fourier interpolation estimator (FIE) is proposed. Closed-form expressions of the SNR improvement and theoretical bit error rate (BER) based on the assumption that the output of the correlator is Gaussian distributed are both derived. Performance results obtained by numerical simulation are also presented and compared with theoretical results.展开更多
This paper presented a scheme of two-hop cellular network with fixed relay nodes (FRN). Based on this scheme, co-channel interference and signal interference ratio(SIR) received by base station(BS) and FRN were analyz...This paper presented a scheme of two-hop cellular network with fixed relay nodes (FRN). Based on this scheme, co-channel interference and signal interference ratio(SIR) received by base station(BS) and FRN were analyzed. Both the theoretical analysis and simulation results show that the SIR can be improved significantly when relays are employed in the network. The higher spectral efficiency can be obtained due to the improved two-hop link quality through the use of adaptive modulation and coding (AMC). The antenna height of FRN and the cell radius of BS and that of FRN influence SIR received by BS and FRN and the system spectral efficiency greatly. The proper antenna height of FRN and cell radius of BS and that of FRN were also given to get the highest spectral efficiency.展开更多
Heterogeneous network consists of the pico cells overlaid over the macro cell coverage area in a wireless cellular network. The pico cells are deployed to increase the capacity of the homogeneous network by reusing th...Heterogeneous network consists of the pico cells overlaid over the macro cell coverage area in a wireless cellular network. The pico cells are deployed to increase the capacity of the homogeneous network by reusing the spectrum further. However, more users will tend to be associated to the macro cell due to the fact that the transmit power of the pico cell is low. In order to increase the number of users associated to the pico cell, range extension techniques like biased association are used. This will cause severe interference to cell edge users of the pico cell from the macro cell causing degradation in throughput performance in the cell range extension area. In this paper, interference mitigation using receiver processing along with different scheduling techniques is proposed to improve the throughput, average delay, and the packet delivery ratio performance of the system. The performance comparison of the round robin, proportional fair and modified largest weighted delay first (MLWDF) algorithm for resource allocation using interference suppressing receiver is done, and analyzed. It is shown that the MLWDF algorithm achieves the highest throughput with minimum average delay of packets with the best delivery ratio.展开更多
Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-N...Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-Noise Ratio (SNR) in any wireless transmission, including in a Digital Video Broadcasting (DVB-S2) receiver. Therefore, this paper presents an algorithm for detecting and mitigating a Multi-tone Continuous Wave Interference (MCWI) using a Multiple Adaptive Notch Filter (MANF), based on the lattice form structure. The Adaptive Notch Filter (ANF) is constructed using the second-order IIR NF. The approach consists in developing a robust low-complexity algorithm for removing unknown MCWI. The MANF model is a multistage model, with each stage consisting of two ANFs: the adaptive IIR notch filter <i>H</i><i><sub>l</sub></i>(<i>z</i>) and the adaptive IIR notch filter <i>H</i><i><sub>N</sub></i>(<i>z</i>), which can detect and mitigate CWI. In this model, the ANF is used for estimating the Jamming-to-Signal Ratio (JSR) and the frequency of the interference (<i>w(0)</i>) by using an LMS-based algorithm. The depth of the notch is then adjusted based on the estimation of the JSR. In contrast, the ANF <i>H</i><i><sub>N</sub></i>(<i>z</i>) is used to mitigate the CW interference. Simulation results show that the proposed ANF is an effective method for eliminating/reducing the effects of MCWI, and yields better system performance than full suppression (<i>k<sub>N</sub></i>=1) for low JSR values, and mostly the same performance for high JSR values. Moreover, the proposed can detect low and high JSR and track hopping frequency interference and provides better Bit error ratio (BER) performance compared to the case without an IIR notch filter.展开更多
Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal ...Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal antennas were correlated with the data received from the Vertically Polarized Antennas (VPAs) to estimate and cancel the interference adaptively in the VPAs. Suppressing the interference after each coherent integration time interval, about 25 dB signal-to-interference ratio is expected with the experimentally derived data.展开更多
The growing demand for wireless services coupled with the limited availability of suitable electromagnetic spectrum is increasing the need for more efficient RF spectrum utilization. Spectrum allocated to TV operators...The growing demand for wireless services coupled with the limited availability of suitable electromagnetic spectrum is increasing the need for more efficient RF spectrum utilization. Spectrum allocated to TV operators can potentially be shared by wireless data services, either when the primary service is switched off or by exploiting spatial reuse opportunities. This paper describes a dynamic spectrum access scheme for use in the TV bands which uses cognitive radio techniques to determine the spectrum availability. The approach allows secondary users (SU) to operate in the presence of the primary users (PU) and the OPNET simulation and modelling software has been used to model the performance of the scheme. An analysis of the results shows that the proposed scheme protects the primary users from harmful interference from the secondary users. In comparison with the 802.11 MAC protocol, the scheme improves spectrum utilization by about 27% while limiting the interference imposed on the primary receiver.展开更多
As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is al...As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 11074307 and 10774192)the Opening Research Foundation of State Key Laboratory of Precision Spectroscopy,ECNU
文摘Factors influencing the signal-to-noise ratio (SNR) of lensless ghost interference with thermal incoherent light are investigated. Our result shows that the SNR of lensless ghost interference is related to the transverse length of the object, the position of the object in the imaging system and the transverse size of the light source. Furthermore, the effects of these factors on the SNR are discussed in detail by numerical simulations.
基金Sponsored by the Beijing Municipal Natural Science Foundation(4052024)
文摘A generalized approach for narrowband interference (NBI) suppression in direct sequence spread spectrum (DSSS) communication systems using adaptive infinite impulse response (IIR) filter is presented. The excision filter coefficients depend on both the jammer power and its instantaneous frequency. The dependency of the filter construction on the jammer power is significant as it allows optimal tradeoff between interference removal and signal distortion by maximizing the receiver signal to noise ratio improvement(SNRI). Instead of traditional adaptive line enhancer (ALE) estimator, a preferable NBI estimator-Fourier interpolation estimator (FIE) is proposed. Closed-form expressions of the SNR improvement and theoretical bit error rate (BER) based on the assumption that the output of the correlator is Gaussian distributed are both derived. Performance results obtained by numerical simulation are also presented and compared with theoretical results.
基金National Science Fund for Creative ResearchGroups (No. 60521002) Chinese NationalKey Technology R&D Program(No. 2005-BA908B02)Science Foundation of ShanghaiMunicipal Commission of Science and Tech-nology(No.05dz05802)
文摘This paper presented a scheme of two-hop cellular network with fixed relay nodes (FRN). Based on this scheme, co-channel interference and signal interference ratio(SIR) received by base station(BS) and FRN were analyzed. Both the theoretical analysis and simulation results show that the SIR can be improved significantly when relays are employed in the network. The higher spectral efficiency can be obtained due to the improved two-hop link quality through the use of adaptive modulation and coding (AMC). The antenna height of FRN and the cell radius of BS and that of FRN influence SIR received by BS and FRN and the system spectral efficiency greatly. The proper antenna height of FRN and cell radius of BS and that of FRN were also given to get the highest spectral efficiency.
文摘Heterogeneous network consists of the pico cells overlaid over the macro cell coverage area in a wireless cellular network. The pico cells are deployed to increase the capacity of the homogeneous network by reusing the spectrum further. However, more users will tend to be associated to the macro cell due to the fact that the transmit power of the pico cell is low. In order to increase the number of users associated to the pico cell, range extension techniques like biased association are used. This will cause severe interference to cell edge users of the pico cell from the macro cell causing degradation in throughput performance in the cell range extension area. In this paper, interference mitigation using receiver processing along with different scheduling techniques is proposed to improve the throughput, average delay, and the packet delivery ratio performance of the system. The performance comparison of the round robin, proportional fair and modified largest weighted delay first (MLWDF) algorithm for resource allocation using interference suppressing receiver is done, and analyzed. It is shown that the MLWDF algorithm achieves the highest throughput with minimum average delay of packets with the best delivery ratio.
文摘Radio Frequency Interferences (RFI), such as strong Continuous Wave Interferences (CWI), can influence the Quality of Service (QoS) of communications, increasing the Bit Error Rate (BER) and decreasing the Signal-to-Noise Ratio (SNR) in any wireless transmission, including in a Digital Video Broadcasting (DVB-S2) receiver. Therefore, this paper presents an algorithm for detecting and mitigating a Multi-tone Continuous Wave Interference (MCWI) using a Multiple Adaptive Notch Filter (MANF), based on the lattice form structure. The Adaptive Notch Filter (ANF) is constructed using the second-order IIR NF. The approach consists in developing a robust low-complexity algorithm for removing unknown MCWI. The MANF model is a multistage model, with each stage consisting of two ANFs: the adaptive IIR notch filter <i>H</i><i><sub>l</sub></i>(<i>z</i>) and the adaptive IIR notch filter <i>H</i><i><sub>N</sub></i>(<i>z</i>), which can detect and mitigate CWI. In this model, the ANF is used for estimating the Jamming-to-Signal Ratio (JSR) and the frequency of the interference (<i>w(0)</i>) by using an LMS-based algorithm. The depth of the notch is then adjusted based on the estimation of the JSR. In contrast, the ANF <i>H</i><i><sub>N</sub></i>(<i>z</i>) is used to mitigate the CW interference. Simulation results show that the proposed ANF is an effective method for eliminating/reducing the effects of MCWI, and yields better system performance than full suppression (<i>k<sub>N</sub></i>=1) for low JSR values, and mostly the same performance for high JSR values. Moreover, the proposed can detect low and high JSR and track hopping frequency interference and provides better Bit error ratio (BER) performance compared to the case without an IIR notch filter.
文摘Based on a dual-polarization high-frequency wave radar system, an adaptive system using horizontal antennas for the suppression of the Es layer interference (ELI) is deseribech The data received from the horizontal antennas were correlated with the data received from the Vertically Polarized Antennas (VPAs) to estimate and cancel the interference adaptively in the VPAs. Suppressing the interference after each coherent integration time interval, about 25 dB signal-to-interference ratio is expected with the experimentally derived data.
文摘The growing demand for wireless services coupled with the limited availability of suitable electromagnetic spectrum is increasing the need for more efficient RF spectrum utilization. Spectrum allocated to TV operators can potentially be shared by wireless data services, either when the primary service is switched off or by exploiting spatial reuse opportunities. This paper describes a dynamic spectrum access scheme for use in the TV bands which uses cognitive radio techniques to determine the spectrum availability. The approach allows secondary users (SU) to operate in the presence of the primary users (PU) and the OPNET simulation and modelling software has been used to model the performance of the scheme. An analysis of the results shows that the proposed scheme protects the primary users from harmful interference from the secondary users. In comparison with the 802.11 MAC protocol, the scheme improves spectrum utilization by about 27% while limiting the interference imposed on the primary receiver.
文摘As wireless data applications over cellular networks become more widespread, the pressure to increase capacity will become even more intense. Capacity in the 800 and 900 MHz bands, where bandwidth is restricted, is already becoming a limiting factor. This paper attempts to address how the application of smart antenna systems has brought about improvements in call quality and increased capacity through reduced Interference in Mobile Communication. The smart antenna may be in a variety of ways to improve the performance of a communications system. Perhaps most importantly is its capability to cancel co-channel interference. It helps in improving the system performance by increasing the channel capacity, spectrum efficiency, extending range coverage, speech quality, enabling tighter reuse of frequencies within a cellular network and economically, feasible increased signal gain, greater, reduced multipath reflection. It has been argued that Smart antennas and the Algorithms to control them are vital to a high-capacity communication system development.