An approach based on multi-scale ehirplet sparse signal decomposition is proposed to separate the malti-component polynomial phase signals, and estimate their instantaneous frequencies. In this paper, we have generate...An approach based on multi-scale ehirplet sparse signal decomposition is proposed to separate the malti-component polynomial phase signals, and estimate their instantaneous frequencies. In this paper, we have generated a family of multi-scale chirplet functions which provide good local correlations of chirps over shorter time interval. At every decomposition stage, we build the so-called family of chirplets and our idea is to use a structured algorithm which exploits information in the family to chain chirplets together adaptively as to form the polyncmial phase signal component whose correlation with the current residue signal is largest. Simultaueously, the polynomial instantaneous frequency is estimated by connecting the linear frequency of the chirplet functions adopted in the current separation. Simulation experiment demonstrated that this method can separate the camponents of the multi-component polynamial phase signals effectively even in the low signal-to-noise ratio condition, and estimate its instantaneous frequency accurately.展开更多
基金supported by the National Science Foundation of China(No.50875078)
文摘An approach based on multi-scale ehirplet sparse signal decomposition is proposed to separate the malti-component polynomial phase signals, and estimate their instantaneous frequencies. In this paper, we have generated a family of multi-scale chirplet functions which provide good local correlations of chirps over shorter time interval. At every decomposition stage, we build the so-called family of chirplets and our idea is to use a structured algorithm which exploits information in the family to chain chirplets together adaptively as to form the polyncmial phase signal component whose correlation with the current residue signal is largest. Simultaueously, the polynomial instantaneous frequency is estimated by connecting the linear frequency of the chirplet functions adopted in the current separation. Simulation experiment demonstrated that this method can separate the camponents of the multi-component polynamial phase signals effectively even in the low signal-to-noise ratio condition, and estimate its instantaneous frequency accurately.