期刊文献+
共找到6,828篇文章
< 1 2 250 >
每页显示 20 50 100
Timosaponin AⅢ induces drug-metabolizing enzymes by activating constitutive androstane receptor (CAR) via dephosphorylation of the EGFR signaling pathway 被引量:1
1
作者 Muhammad Zubair Hafiz Jie Pan +4 位作者 Zhiwei Gao Ying Huo Haobin Wang Wei Liu Jian Yang 《Journal of Biomedical Research》 CAS CSCD 2024年第4期382-396,共15页
The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administratio... The current study aimed to assess the effect of timosaponin AⅢ(T-AⅢ)on drug-metabolizing enzymes during anticancer therapy.The in vivo experiments were conducted on nude and ICR mice.Following a 24-day administration of T-AⅢ,the nude mice exhibited an induction of CYP2B10,MDR1,and CYP3A11 expression in the liver tissues.In the ICR mice,the expression levels of CYP2B10 and MDR1 increased after a three-day T-AⅢ administration.The in vitro assessments with HepG2 cells revealed that T-AⅢ induced the expression of CYP2B6,MDR1,and CYP3A4,along with constitutive androstane receptor(CAR)activation.Treatment with CAR siRNA reversed the T-AⅢ-induced increases in CYP2B6 and CYP3A4 expression.Furthermore,other CAR target genes also showed a significant increase in the expression.The up-regulation of murine CAR was observed in the liver tissues of both nude and ICR mice.Subsequent findings demonstrated that T-AⅢ activated CAR by inhibiting ERK1/2 phosphorylation,with this effect being partially reversed by the ERK activator t-BHQ.Inhibition of the ERK1/2 signaling pathway was also observed in vivo.Additionally,T-AⅢ inhibited the phosphorylation of EGFR at Tyr1173 and Tyr845,and suppressed EGF-induced phosphorylation of EGFR,ERK,and CAR.In the nude mice,T-AⅢ also inhibited EGFR phosphorylation.These results collectively indicate that T-AⅢ is a novel CAR activator through inhibition of the EGFR pathway. 展开更多
关键词 timosaponin AⅢ CAR metabolism enzyme ERK1/2 signaling pathway EGFR signaling pathway
下载PDF
Gut microbiota dysbiosis contributes toα-synuclein-related pathology associated with C/EBPβ/AEP signaling activation in a mouse model of Parkinson’s disease 被引量:3
2
作者 Xiaoli Fang Sha Liu +9 位作者 Bilal Muhammad Mingxuan Zheng Xing Ge Yan Xu Shu Kan Yang Zhang Yinghua Yu Kuiyang Zheng Deqin Geng Chun-Feng Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2081-2088,共8页
Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosi... Parkinson’s disease is a neurodegenerative disease characterized by motor and gastrointestinal dysfunction.Gastrointestinal dysfunction can precede the onset of motor symptoms by several years.Gut microbiota dysbiosis is involved in the pathogenesis of Parkinson’s disease,whether it plays a causal role in motor dysfunction,and the mechanism underlying this potential effect,remain unknown.CCAAT/enhancer binding proteinβ/asparagine endopeptidase(C/EBPβ/AEP)signaling,activated by bacterial endotoxin,can promoteα-synuclein transcription,thereby contributing to Parkinson’s disease pathology.In this study,we aimed to investigate the role of the gut microbiota in C/EBPβ/AEP signaling,α-synuclein-related pathology,and motor symptoms using a rotenone-induced mouse model of Parkinson’s disease combined with antibiotic-induced microbiome depletion and fecal microbiota transplantation.We found that rotenone administration resulted in gut microbiota dysbiosis and perturbation of the intestinal barrier,as well as activation of the C/EBP/AEP pathway,α-synuclein aggregation,and tyrosine hydroxylase-positive neuron loss in the substantia nigra in mice with motor deficits.However,treatment with rotenone did not have any of these adverse effects in mice whose gut microbiota was depleted by pretreatment with antibiotics.Importantly,we found that transplanting gut microbiota derived from mice treated with rotenone induced motor deficits,intestinal inflammation,and endotoxemia.Transplantation of fecal microbiota from healthy control mice alleviated rotenone-induced motor deficits,intestinal inflammation,endotoxemia,and intestinal barrier impairment.These results highlight the vital role that gut microbiota dysbiosis plays in inducing motor deficits,C/EBPβ/AEP signaling activation,andα-synuclein-related pathology in a rotenone-induced mouse model of Parkinson’s disease.Additionally,our findings suggest that supplementing with healthy microbiota may be a safe and effective treatment that could help ameliorate the progression of motor deficits in patients with Parkinson’s disease. 展开更多
关键词 C/EBP/AEP signaling pathway ENDOTOXEMIA fecal microbiota transplantation intestinal barrier intestinal inflammation microbiota-gut-brain axis Parkinson’s disease
下载PDF
Hypoglycemic mechanism of Tegillarca granosa polysaccharides on type 2 diabetic mice by altering gut microbiota and regulating the PI3K-akt signaling pathwaye 被引量:1
3
作者 Qihong Jiang Lin Chen +5 位作者 Rui Wang Yin Chen Shanggui Deng Guoxin Shen Shulai Liu Xingwei Xiang 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期842-855,共14页
Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2... Type 2 diabetes mellitus(T2DM)is a complex metabolic disease threatening human health.We investigated the effects of Tegillarca granosa polysaccharide(TGP)and determined its potential mechanisms in a mouse model of T2DM established through a high-fat diet and streptozotocin.TGP(5.1×10^(3) Da)was composed of mannose,glucosamine,rhamnose,glucuronic acid,galactosamine,glucose,galactose,xylose,and fucose.It could significantly alleviate weight loss,reduce fasting blood glucose levels,reverse dyslipidemia,reduce liver damage from oxidative stress,and improve insulin sensitivity.RT-PCR and Western blotting indicated that TGP could activate the phosphatidylinositol-3-kinase/protein kinase B signaling pathway to regulate disorders in glucolipid metabolism and improve insulin resistance.TGP increased the abundance of Allobaculum,Akkermansia,and Bifidobacterium,restored the microbiota abundance in the intestinal tracts of mice with T2DM,and promoted short-chain fatty acid production.This study provides new insights into the antidiabetic effects of TGP and highlights its potential as a natural hypoglycemic nutraceutical. 展开更多
关键词 Tegillarca granosa polysaccharide Type 2 diabetes mellitus Glycolipid metabolism PI3K/Akt signaling pathway
下载PDF
Argatroban promotes recovery of spinal cord injury by inhibiting the PAR1/JAK2/STAT3 signaling pathway
4
作者 Chenxi Zhao Tiangang Zhou +9 位作者 Ming Li Jie Liu Xiaoqing Zhao Yilin Pang Xinjie Liu Jiawei Zhang Lei Ma Wenxiang Li Xue Yao Shiqing Feng 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第2期434-439,共6页
Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we... Argatroban is a synthetic thrombin inhibitor approved by U.S.Food and Drug Administration for the treatment of thrombosis.However,whether it plays a role in the repair of spinal cord injury is unknown.In this study,we established a rat model of T10 moderate spinal cord injury using an NYU Impactor ModerⅢand performed intraperitoneal injection of argatroban for 3 consecutive days.Our results showed that argatroban effectively promoted neurological function recovery after spinal cord injury and decreased thrombin expression and activity in the local injured spinal cord.RNA sequencing transcriptomic analysis revealed that the differentially expressed genes in the argatroban-treated group were enriched in the JAK2/STAT3 pathway,which is involved in astrogliosis and glial scar formation.Western blotting and immunofluorescence results showed that argatroban downregulated the expression of the thrombin receptor PAR1 in the injured spinal cord and the JAK2/STAT3 signal pathway.Argatroban also inhibited the activation and proliferation of astrocytes and reduced glial scar formation in the spinal cord.Taken together,these findings suggest that argatroban may inhibit astrogliosis by inhibiting the thrombin-mediated PAR1/JAK2/STAT3 signal pathway,thereby promoting the recovery of neurological function after spinal cord injury. 展开更多
关键词 ARGATROBAN ASTROGLIOSIS JAK/STAT signaling pathway protease-activated receptor-1 spinal cord injury THROMBIN vimentin
下载PDF
Spi1 regulates the microglial/macrophage inflammatory response via the PI3K/AKT/mTOR signaling pathway after intracerebral hemorrhage
5
作者 Guoqiang Zhang Jianan Lu +7 位作者 Jingwei Zheng Shuhao Mei Huaming Li Xiaotao Zhang An Ping Shiqi Gao Yuanjian Fang Jun Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期161-170,共10页
Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related t... Preclinical and clinical studies have shown that microglia and macrophages participate in a multiphasic brain damage repair process following intracerebral hemorrhage.The E26 transformation-specific sequence-related transcription factor Spi1 regulates microglial/macrophage commitment and maturation.However,the effect of Spi1 on intracerebral hemorrhage remains unclear.In this study,we found that Spi1 may regulate recovery from the neuroinflammation and neurofunctional damage caused by intracerebral hemorrhage by modulating the microglial/macrophage transcriptome.We showed that high Spi1expression in microglia/macrophages after intracerebral hemorrhage is associated with the activation of many pathways that promote phagocytosis,glycolysis,and autophagy,as well as debris clearance and sustained remyelination.Notably,microglia with higher levels of Soil expression were chara cterized by activation of pathways associated with a variety of hemorrhage-related cellular processes,such as complement activation,angiogenesis,and coagulation.In conclusion,our results suggest that Spi1 plays a vital role in the microglial/macrophage inflammatory response following intracerebral hemorrhage.This new insight into the regulation of Spi1 and its target genes may advance our understanding of neuroinflammation in intracerebral hemorrhage and provide therapeutic targets for patients with intracerebral hemorrhage. 展开更多
关键词 intracerebral hemorrhage MACROPHAGE microglia neuroinflammation PHAGOCYTOSIS PI3K/AKT/mTOR signaling pathway Spi1 TRANSCRIPTOMICS
下载PDF
Rice ONAC016 promotes leaf senescence through abscisic acid signaling pathway involving OsNAP
6
作者 Eunji Gi Sung-Hwan Cho +2 位作者 Suk-Hwan Kim Kiyoon Kang Nam-Chon Paek 《The Crop Journal》 SCIE CSCD 2024年第3期709-720,共12页
Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescen... Senescence-induced NAC(senNAC)TFs play a crucial role in senescence during the final stage of leaf development.In this study,we identified a rice senNAC,ONAC016,which functions as a positive regulator of leaf senescence.The expression of ONAC016 increased rapidly in rice leaves during the progression of dark-induced and natural senescence.The onac016-1 knockout mutant showed a delayed leaf yellowing phenotype,whereas the overexpression of ONAC016 accelerated leaf senescence.Notably,ONAC016 expression was upregulated by abscisic acid(ABA),and thus detached leaves of the onac016-1 mutant remained green much longer under ABA treatment.Quantitative RT-PCR analysis showed that ONAC016 upregulates the genes associated with chlorophyll degradation,senescence,and ABA signaling.Yeast one-hybrid and dual-luciferase assays revealed that ONAC016 binds directly to the promoter regions of OsNAP,a key gene involved in chlorophyll degradation and ABA-induced senescence.Taken together,these results suggest that ONAC016 plays an important role in promoting leaf senescence through the ABA signaling pathway involving OsNAP. 展开更多
关键词 RICE ONAC016 OsNAP Leaf senescence Abscisic acid signaling
下载PDF
Glucocorticoid receptor signaling in the brain and its involvement in cognitive function
7
作者 Chonglin Su Taiqi Huang +3 位作者 Meiyu Zhang Yanyu Zhang Yan Zeng Xingxing Chen 《Neural Regeneration Research》 SCIE CAS 2025年第9期2520-2537,共18页
The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an impo... The hypothalamic-pituitary-adrenal axis regulates the secretion of glucoco rticoids in response to environmental challenges.In the brain,a nuclear receptor transcription fa ctor,the glucocorticoid recepto r,is an important component of the hypothalamicpituitary-a d renal axis's negative feedback loop and plays a key role in regulating cognitive equilibrium and neuroplasticity.The glucoco rticoid receptor influences cognitive processes,including glutamate neurotransmission,calcium signaling,and the activation of brain-derived neurotrophic factor-mediated pathways,through a combination of genomic and non-genomic mechanisms.Protein interactions within the central nervous system can alter the expression and activity of the glucocorticoid receptor,there by affecting the hypothalamic-pituitary-a d renal axis and stress-related cognitive functions.An appropriate level of glucocorticoid receptor expression can improve cognitive function,while excessive glucocorticoid receptors or long-term exposure to glucoco rticoids may lead to cognitive impairment.Patients with cognitive impairment-associated diseases,such as Alzheimer's disease,aging,depression,Parkinson's disease,Huntington's disease,stroke,and addiction,often present with dysregulation of the hypothalamic-pituitary-adrenal axis and glucocorticoid receptor expression.This review provides a comprehensive overview of the functions of the glucoco rticoid receptor in the hypothalamic-pituitary-a d renal axis and cognitive activities.It emphasizes that appropriate glucocorticoid receptor signaling fa cilitates learning and memory,while its dysregulation can lead to cognitive impairment.This provides clues about how glucocorticoid receptor signaling can be targeted to ove rcome cognitive disability-related disorders. 展开更多
关键词 brain-derived neurotrophic factor calcium signaling glucocorticoid receptor GLUCOCORTICOID glutamate transmission hypothalamic-pituitary-adrenal axis long-term potentiation neurocognitive disorders NEUROPLASTICITY stress
下载PDF
Downregulation of MUC1 Inhibits Proliferation and Promotes Apoptosis by Inactivating NF-κB Signaling Pathway in Human Nasopharyngeal Carcinoma
8
作者 WU Shou-Wu LIN Shao-Kun +11 位作者 NIAN Zhong-Zhu WANG Xin-Wen LIN Wei-Nian ZHUANG Li-Ming WU Zhi-Sheng HUANG Zhi-Wei WANG A-Min GAO Ni-Li CHEN Jia-Wen YUAN Wen-Ting LU Kai-Xian LIAO Jun 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第9期2182-2193,共12页
Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collect... Objective To investigate the effect of mucin 1(MUC1)on the proliferation and apoptosis of nasopharyngeal carcinoma(NPC)and its regulatory mechanism.Methods The 60 NPC and paired para-cancer normal tissues were collected from October 2020 to July 2021 in Quanzhou First Hospital.The expression of MUC1 was measured by real-time quantitative PCR(qPCR)in the patients with PNC.The 5-8F and HNE1 cells were transfected with siRNA control(si-control)or siRNA targeting MUC1(si-MUC1).Cell proliferation was analyzed by cell counting kit-8 and colony formation assay,and apoptosis was analyzed by flow cytometry analysis in the 5-8F and HNE1 cells.The qPCR and ELISA were executed to analyze the levels of TNF-αand IL-6.Western blot was performed to measure the expression of MUC1,NFкB and apoptosis-related proteins(Bax and Bcl-2).Results The expression of MUC1 was up-regulated in the NPC tissues,and NPC patients with the high MUC1 expression were inclined to EBV infection,growth and metastasis of NPC.Loss of MUC1 restrained malignant features,including the proliferation and apoptosis,downregulated the expression of p-IкB、p-P65 and Bcl-2 and upregulated the expression of Bax in the NPC cells.Conclusion Downregulation of MUC1 restrained biological characteristics of malignancy,including cell proliferation and apoptosis,by inactivating NF-κB signaling pathway in NPC. 展开更多
关键词 mucin 1 nasopharyngeal carcinoma NF-κB signaling pathway PROLIFERATION APOPTOSIS
下载PDF
Gga-miRNA-181-5p family facilitates chicken myogenesis via targeting TGFBR1 to block TGF-βsignaling
9
作者 Xiaoxu Shen Yongtong Tian +10 位作者 Wentao He Can He Shunshun Han Yao Han Lu Xia Bo Tan Menggen Ma Houyang Kang Jie Yu Qing Zhu Huadong Yin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第8期2764-2777,共14页
MicroRNAs(miRNAs)have been demonstrated to control chicken skeletal muscle growth,however,the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.Here,our study identified the two... MicroRNAs(miRNAs)have been demonstrated to control chicken skeletal muscle growth,however,the potential function of the miR-181-5p family in chicken myogenesis remains largely unknown.Here,our study identified the two chicken(Gallus gallus;Gga)miR-181-5p family members widely expressed in various tissues,specifically miR-181a-5p and miR-181b-5p.Besides,the breast muscles of fast-growing broilers expressed higher levels of miR-181a-5p and miR-181b-5p than those of slow-growing layers.Functionally,miR-181a-5p and miR-181b-5p both promote the expression level of myogenic factors including myogenin(MyoG),myogenic differentiation 1(MyoD1),and myosin heavy chain(MyHC),meanwhile accelerating the myotube formation of skeletal muscle satellite cells(SMSCs).Mechanistically,miR-181a-5p and miR-181b-5p directly bind to the 3′untranslated region(UTR)of the transforming growth factor beta receptor 1(TGFBR1)mRNA,further reducing the expression of TGFBR1.TGFBR1 is a key Transforming growth factor beta(TGF-β)signaling transduction receptor and had a negative function in muscle cell differentiation.Furthermore,knockdown of TGFBR1 facilitated the expression of chicken myogenic factors,boosted myotube formation,and decreased the SMAD family member 2/3(SMAD2/3)phosphorylation in chicken SMSCs.SMAD2/3 are downstream of TGF-βsignaling,and miR-181a-5p and miR-181b-5p could reduce the expression of TGFBR1 to further diminish the SMAD2/3 phosphorylation.Our findings revealed that the miR-181-5p family targets TGFBR1 to break the TGF-βsignaling transduction,which resulted in promoting chicken skeletal muscle development. 展开更多
关键词 miRNA-181-5p family SMSCs differentiation TGFBR1 TGF-βsignaling
下载PDF
Cinobufotalin prevents bone loss induced by ovariectomy in mice through the BMPs/SMAD and Wnt/β-catenin signaling pathways
10
作者 Da-zhuang Lu Li-jun Zeng +8 位作者 Yang Li Ran-li Gu Meng-long Hu Ping Zhang Peng Yu Xiao Zhang Zheng-wei Xie Hao Liu Yong-sheng Zhou 《Animal Models and Experimental Medicine》 CAS CSCD 2024年第3期208-221,共14页
Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy pre... Background:Osteoporosis is a chronic bone disease characterized by bone loss and decreased bone strength.However,current anti-resorptive drugs carry a risk of various complications.The deep learning-based efficacy prediction system(DLEPS)is a forecasting tool that can effectively compete in drug screening and prediction based on gene expression changes.This study aimed to explore the protective effect and potential mechanisms of cinobufotalin(CB),a traditional Chinese medicine(TCM),on bone loss.Methods:DLEPS was employed for screening anti-osteoporotic agents according to gene profile changes in primary osteoporosis.Micro-CT,histological and morphological analysis were applied for the bone protective detection of CB,and the osteogenic differentiation/function in human bone marrow mesenchymal stem cells(hBMMSCs)were also investigated.The underlying mechanism was verified using qRT-PCR,Western blot(WB),immunofluorescence(IF),etc.Results:A safe concentration(0.25mg/kg in vivo,0.05μM in vitro)of CB could effectively preserve bone mass in estrogen deficiency-induced bone loss and promote osteogenic differentiation/function of hBMMSCs.Both BMPs/SMAD and Wnt/β-catenin signaling pathways participated in CB-induced osteogenic differentiation,further regulating the expression of osteogenesis-associated factors,and ultimately promoting osteogenesis.Conclusion:Our study demonstrated that CB could significantly reverse estrogen deficiency-induced bone loss,further promoting osteogenic differentiation/function of hBMMSCs,with BMPs/SMAD and Wnt/β-catenin signaling pathways involved. 展开更多
关键词 BMPs/SMAD bone loss cinobufotalin hBMMSCs OSTEOGENESIS OSTEOPOROSIS Wnt/β-catenin signaling pathways
下载PDF
Suppressing a mitochondrial calcium uniporter activates the calcium signaling pathway and promotes cell elongation in cotton
11
作者 Yujia Duan Xiaoguang Shang +4 位作者 Ruiping Tian Weixi Li Xiaohui Song Dayong Zhang Wangzhen Guo 《The Crop Journal》 SCIE CSCD 2024年第2期411-421,共11页
Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development rema... Mitochondrial calcium uniporter(MCU)is a conserved calcium ion(Ca^(2+))transporter in the mitochondrial inner membrane of eukaryotic cells.How MCU proteins regulate Ca^(2+)flow and modulate plant cell development remain largely unclear.Here,we identified the gene GhMCU4 encoding a MCU protein that negatively regulates plant development and fiber elongation in cotton(Gossypium hirsutum).GhMCU4expressed constitutively in various tissues with the higher transcripts in elongating fiber cells.Knockdown of GhMCU4 in cotton significantly elevated the plant height and root length.The calcium signaling pathway was significantly activated and calcium sensor genes,including Ca^(2+)dependent modulator of interactor of constitutively active ROP(GhCMI1),calmodulin like protein(GhCML46),calciumdependent protein kinases(GhCPKs),calcineurin B-like protein(GhCBLs),and CBL-interacting protein kinases(GhCIPKs),were dramatically upregulated in GhMCU4-silenced plants.Metabolic processes were preferentially enriched,and genes related to regulation of transcription were upregulated in GhMCU4-silenced plants.The contents of Ca^(2+)and H_(2)O_(2)were significantly increased in roots and leaves of GhMCU4-silenced plants.Fiber length and Ca^(2+)and H_(2)O_(2)contents in fibers were significantly increased in GhMCU4-silenced plants.This study indicated that GhMCU4 plays a negative role in regulating cell elongation in cotton,thus expanding understanding in the role of MCU proteins in plant growth and development. 展开更多
关键词 Calcium signaling Hydrogen peroxide Metabolic processed Gossypium hirsutum
下载PDF
Mechanism of action of cordycepin in the treatment of hepatocellular carcinoma via regulation of the Hippo signaling pathway
12
作者 Xiaomin Li Qing Liu +2 位作者 Songyu Xie Xiaoping Wu Junsheng Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期1040-1054,共15页
Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in ... Hepatocellular carcinoma(HCC)is one of the common most malignant tumors.This study aimed to determine the in vitro and in vivo anticancer activity of cordycepin and elucidate its mechanism of action.The results of in vitro and in vivo studies revealed that cordycepin inhibited proliferation and migration in HepG-2 cells and inhibited the growth of HepG-2 xenograft-bearing nude mice by inducing apoptosis.Transcriptome sequencing analysis revealed a total of 403 differential genes,which revealed that cordycepin may play an anti-HCC role by regulating Hippo signaling pathway.The regulatory effects of cordycepin on the Hippo signaling pathway was further investigated using a YAP1 inhibitor.The results demonstrated that cordycepin upregulated the expression of MST1 and LAST1,and subsequently inhibited YAP1,which activated the Hippo signaling pathway.This in turn downregulated the expression of GBP3 and ETV5,and subsequently inhibited cell proliferation and migration.Additionally,YAP1 regulated the expression of Bax and Bcl-2,regulated the mitochondrial apoptotic pathway,and induced apoptosis by upregulating the expression of the caspase-3 protein.In summary,this study reveals that cordycepin exerts its anti-hepatocarcinoma effect through regulating Hippo signaling pathway,and GBP3 and ETV5 may be potential therapeutic targets for hepatocarcinoma. 展开更多
关键词 CORDYCEPIN Hepatocellular carcinoma Hippo signaling pathway GBP3 ETV5
下载PDF
Paeoniflorin ameliorates chronic colitis via the DR3 signaling pathway in group 3 innate lymphoid cells
13
作者 Shaowei Huang Xueqian Xie +11 位作者 Bo Xu Zengfeng Pan Junjie Liang Meiling Zhang Simin Pan Xiaojing Wang Meng Zhao Qing Wang Jinyan Chen Yanyang Li Lian Zhou Xia Luo 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第6期889-901,共13页
Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a promine... Inhibiting the death receptor 3(DR3)signaling pathway in group 3 innate lymphoid cells(ILC3s)presents a promising approach for promoting mucosal repair in individuals with ulcerative colitis(UC).Paeoniflorin,a prominent component of Paeonia lactiflora Pall.,has demonstrated the ability to restore barrier function in UC mice,but the precise mechanism remains unclear.In this study,we aimed to delve into whether paeoniflorin may promote intestinal mucosal repair in chronic colitis by inhibiting DR3 signaling in ILC3s.C57BL/6 mice were subjected to random allocation into 7 distinct groups,namely the control group,the 2%dextran sodium sulfate(DSS)group,the paeoniflorin groups(25,50,and 100 mg/kg),the anti-tumor necrosis factor-like ligand 1A(anti-TL1A)antibody group,and the IgG group.We detected the expression of DR3 signaling pathway proteins and the proportion of ILC3s in the mouse colon using Western blot and flow cytometry,respectively.Meanwhile,DR3-overexpressing MNK-3 cells and 2%DSS-induced Rag1^(-/-)mice were used for verification.The results showed that paeoniflorin alleviated DSS-induced chronic colitis and repaired the intestinal mucosal barrier.Simultaneously,paeoniflorin inhibited the DR3 signaling pathway in ILC3s and regulated the content of cytokines(interleukin-17A,granulocyte-macrophage colony stimulating factor,and interleukin-22).Alternatively,paeoniflorin directly inhibited the DR3 signaling pathway in ILC3s to repair mucosal damage independently of the adaptive immune system.We additionally confirmed that paeoniflorin-conditioned medium(CM)restored the expression of tight junctions in Caco-2 cells via coculture.In conclusion,paeoniflorin ameliorates chronic colitis by enhancing the intestinal barrier in an ILC3-dependent manner,and its mechanism is associated with the inhibition of the DR3 signaling pathway. 展开更多
关键词 PAEONIFLORIN Ulcerative colitis Intestinal mucosal barrier DR3 signaling pathway Group 3 innate lymphoid cells
下载PDF
Enhancement of porcine in vitro embryonic development through luteolin‑mediated activation of the Nrf2/Keap1 signaling pathway
14
作者 Se-Been Jeon Pil-Soo Jeong +5 位作者 Min Ju Kim Hyo-Gu Kang Bong-Seok Song Sun-Uk Kim Seong-Keun Cho Bo-Woong Sim 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期600-613,共14页
Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Lut... Background Oxidative stress,caused by an imbalance in the production and elimination of intracellular reactive oxygen species(ROS),has been recognized for its detrimental effects on mammalian embryonic development.Luteolin(Lut)has been documented for its protective effects against oxidative stress in various studies.However,its specific role in embryonic development remains unexplored.This study aims to investigate the influence of Lut on porcine embryonic development and to elucidate the underlying mechanism.Results After undergoing parthenogenetic activation(PA)or in vitro fertilization,embryos supplemented with 0.5μmol/L Lut displayed a significant enhancement in cleavage and blastocyst formation rates,with an increase in total cell numbers and a decrease in the apoptosis rate compared to the control.Measurements on D2 and D6 revealed that embryos with Lut supplementation had lower ROS levels and higher glutathione levels compared to the control.Moreover,Lut supplementation significantly augmented mitochondrial content and membrane potential.Intriguingly,activation of the Nrf2/Keap1 signaling pathway was observed in embryos supplemented with Lut,leading to the upregulation of antioxidant-related gene transcription levels.To further validate the relationship between the Nrf2/Keap1 signaling pathway and effects of Lut in porcine embryonic development,we cultured PA embryos in a medium supplemented with brusatol,with or without the inclusion of Lut.The positive effects of Lut on developmental competence were negated by brusatol treatment.Conclusions Our findings indicate that Lut-mediated activation of the Nrf2/Keap1 signaling pathway contributes to the enhanced production of porcine embryos with high developmental competence,and offers insight into the mechanisms regulating early embryonic development. 展开更多
关键词 LUTEOLIN Mitochondrial function Nrf2/Keap1 signaling pathway Oxidative stress Porcine embryo development
下载PDF
YTE-17 inhibits colonic carcinogenesis by resetting antitumor immune response via Wnt5a/JNK mediated metabolic signaling
15
作者 Hua Sui Wanli Deng +9 位作者 Qiong Chai Bing Han Yuli Zhang Zhenzhen Wei Zan Li Ting Wang Jiling Feng Man Yuan Qingfeng Tang Hongxi Xu 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第4期525-541,共17页
The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer.Our previous studies highlighted the potent anti-cancer properties of the princ... The density and composition of lymphocytes infiltrating colon tumors serve as predictive factors for the clinical outcome of colon cancer.Our previous studies highlighted the potent anti-cancer properties of the principal compounds found in Garcinia yunnanensis(YTE-17),attributing these effects to the regu-lation of multiple signaling pathways.However,knowledge regarding the mechanism and effect of YTE-17 in the prevention of colorectal cancer is limited.In this study,we conducted isobaric tags for relative and absolute quantification(iTRAQ)analysis on intestinal epithelial cells(IECs)exposed YTE-17,both in vitro and in vivo,revealing a significant inhibition of the Wnt family member 5a(Wnt5a)/c-Jun N-terminal kinase(JNK)signaling pathway.Subsequently,we elucidated the influence and mechanism of YTE-17 on the tumor microenvironment(TME),specifically focusing on macrophage-mediated T helper 17(Th17)cell induction in a colitis-associated cancer(CAC)model with Wnt5a deletion.Additionally,we performed the single-cell RNA sequencing(scRNA-seq)on the colonic tissue from the Wnt5a-deleted CAC model to characterize the composition,lineage,and functional status of immune mesenchymal cells during different stages of colorectal cancer(CRC)progression.Remarkably,our findings demon-strate a significant reduction in M2 macrophage polarization and Th17 cell phenotype upon treatment with YTE-17,leading to the restoration of regulatory T(Treg)/Th17 cell balance in azoxymethane(AOM)/dextran sodium sulfate(DSS)model.Furthermore,we also confirmed that YTE-17 effectively inhibited the glycolysis of Th17 cells in both direct and indirect co-culture systems with M2 macrophages.Notably,our study shed light on potential mechanisms linking the non-canonical Wnt5a/JNK signaling pathway and well-established canonical b-catenin oncogenic pathway in vivo.Specifically,we proposed that Wnt5a/JNK signaling activity in IECs promotes the development of cancer stem cells with b-catenin activity within the TME,involving macrophages and T cells.In summary,our study undergoes the po-tential of YTE-17 as a preventive strategy against CRC development by addressing the imbalance with the immune microenvironment,thereby mitigating the risk of malignancies. 展开更多
关键词 Tumor microenvironment Intestinal epithelial cells Treg/Th17 cells Metabolism Wnt5a/JNK signaling TUMORIGENESIS
下载PDF
Hesperidin ameliorates H_(2)O_(2)-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway
16
作者 Qi Huang Jiashuo Liu +2 位作者 Can Peng Xuefeng Han Zhiliang Tan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1737-1750,共14页
Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucid... Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucidated.Results In this study, we investigated the effects of hesperidin on H_(2)O_(2)-induced oxidative stress in b MECs and the underlying molecular mechanism. We found that hesperidin attenuated H_(2)O_(2)-induced cell damage by reducing reactive oxygen species(ROS) and malondialdehyde(MDA) levels, increasing catalase(CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent.Conclusions Our results suggest that hesperidin could protect b MECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary. 展开更多
关键词 Bovine mammary epithelial cell HESPERIDIN Nrf2 signaling pathway Oxidative stress
下载PDF
Asiaticoside ameliorates type 2 diabetes mellitus in rats by modulating carbohydrate metabolism and regulating insulin signaling
17
作者 B.Prathap V.Satyanarayanan +1 位作者 K.Duraipandian P.Subashree 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第9期401-409,共9页
Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and... Objective:To evaluate the effect of asiaticoside on streptozotocin(STZ)and nicotinamide(NAD)-induced carbohydrate metabolism abnormalities and deregulated insulin signaling pathways in rats.Methods:Asiaticoside(50 and 100 mg/kg body weight)was administered to STZ-NAD-induced diabetic rats for 45 days,and its effects on hyperglycaemic,carbohydrate metabolic,and insulin signaling pathway markers were examined.Results:Asiaticoside increased insulin production,lowered blood glucose levels,and enhanced glycolysis by improving hexokinase activity and suppressing glucose-6-phosphatase and fructose-1,6-bisphosphatase activities.Abnormalities in glycogen metabolism were mitigated by increasing glycogen synthase activity and gluconeogenesis was decreased by decreasing glycogen phosphorylase activity.Furthermore,asiaticoside upregulated the mRNA expressions of IRS-1,IRS-2,and GLUT4 in STZ-NAD-induced diabetic rats and restored the beta cell morphology to normal.Conclusions:Asiaticoside has the potential to ameliorate type 2 diabetes by improving glycolysis,gluconeogenesis,and insulin signaling pathways. 展开更多
关键词 ASIATICOSIDE Type 2 diabetes mellitus Metabolic disorders Carbohydrate metabolism Insulin signaling
下载PDF
Naringin ameliorates H_(2)O_(2)-induced oxidative damage in cells and prolongs the lifespan of female Drosophila melanogaster via the insulin signaling pathway
18
作者 Xiaomei Du Kexin Wang +7 位作者 Xiaoyan Sang Xiangxing Meng Jiao Xie Tianxin Wang Xiaozhi Liu Qun Huang Nan Zhang Hao Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1231-1245,共15页
Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the an... Naringin exists in a wide range of Chinese herbal medicine and has proven to possess several pharmacological properties.In this study,PC12,HepG2 cells,and female Drosophila melanogaster were used to investigate the antioxidative and anti-aging effects of naringin and explore the underlying mechanisms.The results showed that naringin inhibited H_(2)O_(2)-induced decline in cell viability and decreased,the content of reactive oxygen species in cells.Meanwhile,naringin prolonged the lifespan of flies,enhanced the abilities of climbing and the resistance to stress,improved the activities of antioxidant enzymes,and decreased malondialdehyde content.Naringin also improved intestinal barrier dysfunction and reduced abnormal proliferation of intestinal stem cells.Moreover,naringin down-regulated the mRNA expressions of inr,chico,pi 3k,and akt-1,and up-regulated the mRNA expressions of dilp2,dilp3,dilp5,and foxo,thereby activating autophagy-related genes and increasing the number of lysosomes.Furthermore,the mutant stocks assays and computer molecular simulation results further indicated that naringin delayed aging by inhibiting the insulin signaling(IIS)pathway and activating the autophagy pathway,which was consistent with the result of network pharmacological predictions. 展开更多
关键词 Drosophila melanogaster Insulin signaling(IIS)pathway NARINGIN PC12 cell HepG2 cell
下载PDF
Oleuropein alleviates sepsis-induced acute lung injury via the AMPK/Nrf-2/HO-1 signaling
19
作者 Shan-Hu Wang Yang-Yang Wu Xiao-Jiao Xia 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第5期187-198,共12页
Objective:To explore the effect of oleuropein on sepsis-induced acute lung injury(ALI)in vitro and in vivo and investigate the underlying mechanism.Methods:In an lipopolysaccharide(LPS)-mediated cell model of sepsis-i... Objective:To explore the effect of oleuropein on sepsis-induced acute lung injury(ALI)in vitro and in vivo and investigate the underlying mechanism.Methods:In an lipopolysaccharide(LPS)-mediated cell model of sepsis-induced ALI and a cecal ligation and puncture-induced mouse model of septic ALI,CCK-8 assay and flow cytometry analysis were used to detect cell activity and apoptosis.ELISA and relevant assay kits were used to measure the levels of inflammatory cytokines and oxidative stress,respectively.Western blot was applied to determine the expression of apoptosis-and AMP-activated protein kinase(AMPK)/nuclear factor erythroid 2-related factor-2(Nrf-2)/heme oxygenase-1(HO-1)signaling-associated proteins.JC-1 staining,adenosine triphosphate(ATP)assay kit,and MitoSOX Red assays were performed to detect mitochondrial membrane potential,ATP content,and mitochondrial ROS formation,respectively.Moreover,lung injury was evaluated by measuring lung morphological alternations,lung wet-to-dry ratio,myeloperoxidase content,and total protein concentration.Results:Oleuropein reduced inflammatory reaction,oxidative damage,and apoptosis,and ameliorated mitochondrial dysfunction in LPS-exposed BEAS-2B cells and mice with septic ALI.Besides,oleuropein activated the AMPK/Nrf-2/HO-1 signaling pathway.However,these effects of oleuropein were abrogated by an AMPK inhibitor compound C.Conclusions:Oleuropein can protect against sepsis-induced ALI in vitro and in vivo by activating the AMPK/Nrf-2/HO-1 signaling,which might be a potential therapeutic agent for the treatment of sepsis-induced ALI. 展开更多
关键词 AMPK/Nrf-2/HO-1 signaling Inflammatory response Lung damage Mitochondrial dysfunction OLEUROPEIN Oxidative stress SEPSIS
下载PDF
Pachymic acid exerts antitumor activities by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B
20
作者 Hao Zhang Kun Zhu +5 位作者 Xue-Feng Zhang Yi-Hui Ding Bing Zhu Wen Meng Qing-Song Ding Fan Zhang 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第4期170-180,共11页
Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluor... Objective:To determine the inhibitory effects of pachymic acid on lung adenocarcinoma(LUAD)cells and elucidate its underlying mechanism.Methods:CCK-8,wound healing,Transwell,Western blot,tube formation,and immunofluorescence assays were carried out to measure the effects of various concentrations of pachymic acid on LUAD cell proliferation,metastasis,angiogenesis as well as autophagy.Subsequently,molecular docking technology was used to detect the potential targeted binding association between pachymic acid and protein tyrosine phosphatase 1B(PTP1B).Moreover,PTP1B was overexpressed in A549 cells to detect the specific mechanisms of pachymic acid.Results:Pachymic acid suppressed LUAD cell viability,metastasis as well as angiogenesis while inducing cell autophagy.It also targeted PTP1B and lowered PTP1B expression.However,PTP1B overexpression reversed the effects of pachymic acid on metastasis,angiogenesis,and autophagy as well as the expression of Wnt3a andβ-catenin in LUAD cells.Conclusions:Pachymic acid inhibits metastasis and angiogenesis,and promotes autophagy in LUAD cells by modulating the Wnt/β-catenin signaling pathway via targeting PTP1B. 展开更多
关键词 Pachymic acid Lung adenocarcinoma Protein tyrosine phosphatase 1B Wnt/β-catenin signaling pathway METASTASIS ANGIOGENESIS AUTOPHAGY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部