期刊文献+
共找到361篇文章
< 1 2 19 >
每页显示 20 50 100
MicroRNA-451 from Human Umbilical Cord-Derived Mesenchymal Stem Cell Exosomes Inhibits Alveolar Macrophage Autophagy via Tuberous Sclerosis Complex 1/Mammalian Target of Rapamycin Pathway to Attenuate Burn-Induced Acute Lung Injury in Rats
1
作者 Zhigang Jia Lin Li +5 位作者 Peng Zhao Guo Fei Shuangru Li Qinqin Song Guangpeng Liu Jisong Liu 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2024年第9期1030-1043,共14页
Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechan... Objective Our previous studies established that microRNA(miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes(hUC-MSC-Exos)alleviates acute lung injury(ALI).This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy.Methods Exosomes were isolated from hUC-MSCs.Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor.Hematoxylin-eosin staining evaluated inflammatory injury.Enzyme-linked immunosorbnent assay measured lipopolysaccharide(LPS),tumor necrosis factor-α,and interleukin-1βlevels.qRT-PCR detected miR-451 and tuberous sclerosis complex 1(TSC1)expressions.The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system.Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin(mTOR)pathway and autophagy.Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level.Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy.MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1.Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages.Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced.Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI. 展开更多
关键词 Acute lung injury Human umbilical cord mesenchymal stem cell-derived exosomes MicroRNA-451 Tuberous sclerosis complex 1 Mammalian target of rapamycin pathway AUTOPHAGY
下载PDF
Effects of Dietary Soy Protein Concentrate on Growth, Digestive Enzymes Activities and Target of Rapamycin Signaling Pathway Regulation in Juvenile Soft-Shelled Turtle, <i>Pelodiscus sinensis</i> 被引量:3
2
作者 Fan Zhou Yaqin Wang +3 位作者 Li Tang Yong Huang Xueyan Ding Zhongyang He 《Agricultural Sciences》 2015年第3期335-345,共11页
Soft-shelled turtle, Pelodiscus sinensis is important aquatic species in China, and searching for alternatives protein resources to fish meal (FM)-based feeds in feed has become urgent and important for its sustainabi... Soft-shelled turtle, Pelodiscus sinensis is important aquatic species in China, and searching for alternatives protein resources to fish meal (FM)-based feeds in feed has become urgent and important for its sustainability development. The present study was conducted to assess the effects of dietary soy protein concentrate (SPC) on growth, digestive enzymes and target of rapamycin (TOR) signaling pathway of juvenile P. sinensis (4.56 ± 0.09 g). SPC was applied to replace FM protein at 0%, 15%, 30% and 60% (designated as T0, T15, T30 and T60, respectively), and each diet was fed to triplicate groups. The results showed that there was no significant difference in growth performance and feed utilization except of the turtles fed with T60 diet, of which showed poorer daily weight gain and feed conversion rate. The pepsin/trypsin and Na+-K+ ATP-ase activities decreased dramatically when SPC level increased, and lipase activities in liver and intestinal tract also showed decline tendency. However, amylase activities were unaffected. No significant differences were observed in TOR, S6K1 and 4E-BP1 genes mRNA expression level of TOR signaling pathway among the treatments. However, the relative phosphorylated level of these proteins decreased significantly when SPC level increased. The present study indicated that high SPC substitution level would suppress digestive enzymes and TOR signaling pathway proteins phosphorylated level and eventually result in growth reduction of P. sinensis. 展开更多
关键词 Soft-Shelled TURTLE P. sinensis Soy Protein Concentrate GROWTH Performance DIGESTIVE Enzymes target of rapamycin signaling pathway
下载PDF
Osteopontin promotes gastric cancer progression via phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway
3
作者 Yue-Chao Qin Xin Yan +2 位作者 Xiao-Lin Yuan Wei-Wei Yu Fan-Jie Qu 《World Journal of Gastrointestinal Oncology》 SCIE 2023年第9期1544-1555,共12页
BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effect... BACKGROUND Gastric cancer(GC)is one of the most common malignant tumors.Osteopontin(OPN)is thought to be closely related to the occurrence,metastasis and prognosis of many types of tumors.AIM To investigate the effects of OPN on the proliferation,invasion and migration of GC cells and its possible mechanism.METHODS The mRNA and protein expression of OPN in the GC cells were analyzed by realtime quantitative-reverse transcription polymerase chain reaction and western blotting,and observe the effect of varying degree expression OPN on the proliferation and other behaviors of GC.Next,the effects of OPN knockdown on GC cells migration and invasion were examined.The short hairpin RNA(shRNA)and negative control shRNA targeting OPN-shRNA were transfected into the cells according to the manufacturer’s instructions.Non transfected cells were classified as control in the identical transfecting process.24 h after RNA transfection cell proliferation activity was detected by 3-(4,5)-dimethylthiahiazo(-z-y1)-3,5-diphenytetrazoliumromide assay,and cell invasiveness and migration were detected by Trans well assay.Meanwhile,the expression of protein kinase B(AKT),matrix metalloproteinase 2(MMP-2)and vascular endothelial growth factor(VEGF)in the human GC cell lines was detected by reverse transcription polymerase chain reaction and western blotting.RESULTS The results of this study revealed that OPN mRNA and protein expression levels were highly expressed in SGC-7901 cells.OPN knockdown by specific shRNA noticeably reduced the capabilities of proliferation,invasion and migration of SGC-7901 cells.Moreover,in the experiments of investigating the underlying mechanism,results showed that OPN knockdown could down-regulated the expression of MMP-2 and VEGF,it also decreased the phosphorylation of AKT.Meanwhile,the protein expression levels of MMP-2,VEGF and phosphorylated AKT was noticeable lower than that in control group in the GC cells after they were added to phosphatidylinositol-3-kinase(PI3K)inhibitor(LY294002).CONCLUSION These results suggested that OPN though PI3K/AKT/mammalian target of rapamycin signal pathway to upregulate MMP-2 and VEGF expression,which contribute SGC-7901 cells to proliferation,invasion and migration.Thus,our results demonstrate that OPN may serve as a novel prognostic biomarkers as well as a potential therapeutic targets for GC. 展开更多
关键词 OSTEOPONTIN Proliferation INVASION Migration Gastric cancer Phosphatidylinositol-3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway
下载PDF
Adenosine triphosphate promotes locomotor recovery after spinal cord injury by activating mammalian target of rapamycin pathway in rats 被引量:3
4
作者 Zhengang Sun Lingyun Hu +4 位作者 Yimin Wen Keming Chen Zhenjuan Sun Haiyuan Yue Chao Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第2期101-110,共10页
The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord ... The mammalian target of rapamycin (mTOR) pathway plays an important role in neuronal growth, proliferation and differentiation. To better understand the role of mTOR pathway involved in the induction of spinal cord injury, rat models of spinal cord injury were established by modified Allen's stall method and interfered for 7 days by intraperitoneal administration of mTOR activator adenosine triphosphate and mTOR kinase inhibitor rapamycin. At 1-4 weeks after spinal cord injury induction, the Basso, Beattie and Bresnahan locomotor rating scale was used to evaluate rat locomotor function, and immunohistochemical staining and western blot analysis were used to detect the expression of nestin (neural stem cell marker), neuronal nuclei (neuronal marker), neuron specific enolase, neurofilament protein 200 (axonal marker), glial fibrillary acidic protein (astrocyte marker), Akt, mTOR and signal transduction and activator of transcription 3 (STAT3). Results showed that adenosine triphosphate-mediated Akt/mTOR/STAT3 pathway increased endogenous neural stem cells, induced neurogenesis and axonal growth, inhibited excessive astrogliosis and improved the locomotor function of rats with spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury serine/threonine-specific protein kinase mammalian target ofrapamycin pathway signal transduction and activator of transcription 3 adenosine triphosphate signal pathway rapamycin photographs-containing paper NEUROREGENERATION
下载PDF
Neuroprotective effect of rapamycin on spinal cord injury via activation of the Wnt/β-catenin signaling pathway 被引量:7
5
作者 Kai Gao Yan-song Wang +5 位作者 Ya-jiang Yuan Zhang-hui Wan Tian-chen Yao Hai-hong Li Pei-fu Tang Xi-fan Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期951-957,共7页
The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the... The Wnt/β-catenin signaling pathway plays a crucial role in neural development, axonal guid- ance, neuropathic pain remission and neuronal survival. In this study, we initially examined the effect of rapamycin on the Wnt/β-catenin signaling pathway after spinal cord iniury, by intraperitoneally injecting spinal cord injured rats with rapamycin over 2 days. Western blot analysis and immunofluorescence staining were used to detect the expression levels of β-catenin protein, caspase-3 protein and brain-derived neurotrophic factor protein, components of the Wnt/β-catenin signaling pathway. Rapamycin increased the levels of β-catenin and brain-derived neurotrophic factor in the injured spinal cord, improved the pathological morphology at the injury site, reduced the loss of motor neurons, and promoted motor functional recovery in rats after spinal cord injury. Our experimental fndings suggest that the neuroprotective effect of rapamycin intervention is mediated through activation of the Wnt/β-catenin signaling pathway after spinal cord injury. 展开更多
关键词 nerve regeneration spinal cord injury rapamycin Wnt/β-catenin signaling pathway apoptosis CASPASE-3 brain-derived neurotrophic factor NEUROPROTECTION loss of neurons NSFC grants neural regeneration
下载PDF
Xihuang pills induce apoptosis in hepatocellular carcinoma by suppressing phosphoinositide 3-kinase/protein kinase- B/mechanistic target of rapamycin pathway 被引量:2
6
作者 Yong-Jie Teng Zhe Deng +14 位作者 Zhao-Guang Ouyang Qing Zhou Si Mei Xing-Xing Fan Yong-Rong Wu Hong-Ping Long Le-Yao Fang Dong-Liang Yin Bo-Yu Zhang Yin-Mei Guo Wen-Hao Zhu Zhen Huang Piao Zheng Di-Min Ning Xue-Fei Tian 《World Journal of Gastrointestinal Oncology》 SCIE 2022年第4期872-886,共15页
BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) a... BACKGROUND The phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin(PI3K/Akt/mTOR) signalling pathway is crucial for cell survival, differentiation, apoptosis and metabolism. Xihuang pills(XHP) are a traditional Chinese preparation with antitumour properties. They inhibit the growth of breast cancer, glioma, and other tumours by regulating the PI3K/Akt/mTOR signalling pathway. However, the effects and mechanisms of action of XHP in hepatocellular carcinoma(HCC) remain unclear. Regulation of the PI3K/Akt/mTOR signalling pathway effectively inhibits the progression of HCC. However, no study has focused on the XHPassociated PI3K/Akt/mTOR signalling pathway. Therefore, we hypothesized that XHP might play a role in inhibiting HCC through the PI3K/Akt/mTOR signalling pathway.AIM To confirm the effect of XHP on HCC and the possible mechanisms involved.METHODS The chemical constituents and active components of XHP were analysed using ultra-performance liquid chromatography-quadrupole time of flight mass spectrometry(UPLC-Q-TOF-MS). Cellbased experiments and in vivo xenograft tumour experiments were utilized to evaluate the effect of XHP on HCC tumorigenesis. First, SMMC-7721 cells were incubated with different concentrations of XHP(0, 0.3125, 0.625, 1.25, and 2.5 mg/mL) for 12 h, 24 h and 48 h. Cell viability was assessed using the CCK-8 assay, followed by an assessment of cell migration using a wound healing assay.Second, the effect of XHP on the apoptosis of SMMC-7721 cells was evaluated. SMMC-7721 cells were stained with fluorescein isothiocyanate and annexin V/propidium iodide. The number of apoptotic cells and cell cycle distribution were measured using flow cytometry. The cleaved protein and mRNA expression levels of caspase-3 and caspase-9 were detected using Western blotting and quantitative reverse-transcription polymerase chain reaction(RT-qPCR), respectively.Third, Western blotting and RT–qPCR were performed to confirm the effects of XHP on the protein and mRNA expression of components of the PI3K/Akt/mTOR signalling pathway.Finally, the effects of XHP on the tumorigenesis of subcutaneous hepatocellular tumours in nude mice were assessed.RESULTS The following 12 compounds were identified in XHP using high-resolution mass spectrometry:Valine, 4-gingerol, myrrhone, ricinoleic acid, glycocholic acid, curzerenone, 11-keto-β-boswellic acid, oleic acid, germacrone, 3-acetyl-9,11-dehydro-β-boswellic acid, 5β-androstane-3,17-dione, and 3-acetyl-11-keto-β-boswellic acid. The cell viability assay results showed that treatment with 0.625mg/mL XHP extract decreased HCC cell viability after 12 h, and the effects were dose-and timedependent. The results of the cell scratch assay showed that the migration of HCC cells was significantly inhibited in a time-dependent manner by the administration of XHP extract(0.625mg/mL). Moreover, XHP significantly inhibited cell migration and resulted in cell cycle arrest and apoptosis. Furthermore, XHP downregulated the PI3K/Akt/mTOR signalling pathway, which activated apoptosis executioner proteins(e.g., caspase-9 and caspase-3). The inhibitory effects of XHP on HCC cell growth were determined in vivo by analysing the tumour xenograft volumes and weights.CONCLUSION XHP inhibited HCC cell growth and migration by stimulating apoptosis via the downregulation of the PI3K/Akt/mTOR signalling pathway, followed by the activation of caspase-9 and caspase-3.Our findings clarified that the antitumour effects of XHP on HCC cells are mediated by the PI3K/Akt/mTOR signalling pathway, revealing that XHP may be a potential complementary therapy for HCC. 展开更多
关键词 Hepatocellular carcinoma Xihuang pills Apoptosis ANTITUMOUR Phosphoinositide 3-kinase/protein kinase-B/mechanistic target of rapamycin pathway
下载PDF
Changes of PI3K/AKT/mTOR signaling pathway in the progression of cervical cancer and its target genes
7
作者 Feng-Xia Chen 《Journal of Hainan Medical University》 2018年第19期59-62,共4页
Objective: To study the changes of PI3K/AKT/mTOR signaling pathway in the progression of cervical cancer and explore its target genes. Methods: The patients who underwent surgical resection and were diagnosed with cer... Objective: To study the changes of PI3K/AKT/mTOR signaling pathway in the progression of cervical cancer and explore its target genes. Methods: The patients who underwent surgical resection and were diagnosed with cervical cancer by postoperative pathology in the First People's Hospital of Jiangxia District Wuhan City between June 2014 and December 2017 were selected, and the cervical cancer lesion tissues and lesion tissues adjacent to cervical cancer were kept;patients who underwent conization and were diagnosed with cervical intraepithelial neoplasia by postoperative pathology in the First People's Hospital of Jiangxia District Wuhan City during the same period were selected, and the cervical intraepithelial neoplasia tissues were kept. The protein levels of PI3K/AKT/mTOR signaling molecules as well as the mRNA expression of proliferation genes and invasion genes were determined. Results: p-PI3K, p-AKT, mTOR, p70S6K and p-4EBP1 protein levels as well as CyclinD1, Survivin, Piwil2, RACK1, EFEMP1 and VEGF mRNA expression in cervical cancer lesion tissues were significantly higher than those in adjacent lesion tissues and cervical intraepithelial neoplasia tissues whereas THBS2, Beclin1, E-cadherin, TIMP1 and TIMP2 mRNA expression were significantly lower than those in adjacent lesion tissues and cervical intraepithelial neoplasia tissues;p-PI3K, p-AKT, mTOR, p70S6K and p-4EBP1 protein levels in cervical cancer lesion tissues were positively correlated with CyclinD1, Survivin, Piwil2, RACK1, EFEMP1 and VEGF mRNA expression, and negatively correlated with THBS2, Beclin1, E-cadherin, TIMP1 and TIMP2 mRNA expression. Conclusion: Excessive activation of PI3K/AKT/mTOR signaling pathway during the progression of cervical cancer can change the expression of multiple proliferation and invasion genes to promote the proliferation and invasion of cancer cells. 展开更多
关键词 CERVICAL cancer MAMMALIAN target of rapamycin signaling pathway Proliferation INVASION
下载PDF
WJH 6^(th) Anniversary Special Issues(2): Hepatocellular carcinoma Mammalian target of rapamycin inhibition in hepatocellular carcinoma 被引量:3
8
作者 René E Ashworth Jennifer Wu 《World Journal of Hepatology》 CAS 2014年第11期776-782,共7页
Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is ... Hepatocellular carcinoma(HCC) is one of the leading causes of cancer-related death worldwide. It is associated with a poor prognosis and has limited treatment options. Sorafenib, a multi-targeted kinase inhibitor, is the only available systemic agent for treatment of HCC that improves overall survival for patients with advanced stage disease; unfortunately, an effective second-line agent for the treatment of progressive or sorafenib-resistant HCC has yet to be identified. This review focuses on components of the mammalian target of rapamycin(mTOR) pathway, its role in HCC pathogenesis, and dual mTOR inhibition as a therapeutic option with potential efficacy in advanced HCC. There are several important upstream and downstream signals in the mTOR pathway, and alternative tumor-promoting pathways are known to exist beyond mTORC1 inhibition in HCC. This review analyzes the relationships of the upstream and downstream regulators of mTORC1 and mTORC2 signaling; it also provides a comprehensive global picture of the interaction between mTORC1 and mTORC2 which demonstrates the pre-clinical relevance of the mTOR pathway in HCC pathogenesis and progression. Finally, it provides scientific rationale for dual mTORC1 and mTORC2 inhibition in the treatment of HCC. Clinical trials utilizing mTORC1 inhibitors and dual mTOR inhibitors in HCC are discussed as well. The mTOR pathway is comprised of two main components, mTORC1 and mTORC2; each has a unique role in the pathogenesis and progression of HCC. In phase Ⅲ studies, mTORC1 inhibitors demonstrate anti-tumor ac-tivity in advanced HCC, but dual mTOR(mTORC1 and mTORC2) inhibition has greater therapeutic potential in HCC treatment which warrants further clinical investigation. 展开更多
关键词 MAMMALIAN target of rapamycin hepato-cellular carcinoma MAMMALIAN target of rapamycin COMPLEX 1 MAMMALIAN target of rapamycin COMPLEX 2 PI3K/AKT/mTOR signaling pathway Sorafenib Everoli-mus Sirolimus Liver transplantation CC-223
下载PDF
Antineoplastic effects of mammalian target of rapamycine inhibitors 被引量:2
9
作者 Maurizio Salvadori 《World Journal of Transplantation》 2012年第5期74-83,共10页
Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant pa... Cancer after transplantation is the third cause of death and one of the more relevant comorbidities. Aim of this review is to verify the role of different pathogenetic mechanisms in cancer development in transplant patients and in general population as well. In particular has been outlined the different role exerted by two different families of drug as calcineurin inhibitor and mammalian target of rapamycin(m TOR) inhibitor. The role of m TOR pathways in cell homeostasis is complex but enough clear. As a consequence the m TOR pathway deregulation is involved in the genesis of several cancers. Hence the relevant role of m TOR inhibitors. The authors review the complex mechanism of action of m TOR inhibitors, not only for what concerns the immune system but also other cells as endothelial, smooth muscle and epithelial cells. The mechanism of action is still now not completely defined and understood. It implies the inhibition of m TOR pathway at different levels, but mainly at level of the phosphorylation of several intracellular kinases that contribute to activate m TOR complex. Many prospective and retrospective studies in transplant patients document the antineoplastic role of m TOR inhibition. More recently m TOR inhibitors proven to be effective in the treatment of some cancers also in general population. Kidney cancers, neuroendocrine tumors and liver cancers seem to be the most sensitive to these drugs. Best results are obtained with a combination treatment, targeting the m TOR pathway at different levels. 展开更多
关键词 Transplant patients Cancer treatment Cell proliferation MAMMALIAN target of rapamycin inhibition MAMMALIAN target of rapamycin pathway PROTOONCOGENES Tumor SUPPRESSORS
下载PDF
A Network Pharmacology Approach to Uncover the Molecular Targets and Associated Potential Pathways of Lycii Fructus for the Treatment of Retinitis Pigmentosa 被引量:5
10
作者 SONG Hou-Pan ZENG Mei-Yan +8 位作者 CHEN Xiao-Juan CHEN Xin-Yi YANG Yi-Jing ZHOU Ya-Sha TIAN Ye LIU Xiao-Qing CAI Xiong PENG Qing-Hua PENG Jun 《Digital Chinese Medicine》 2019年第3期136-146,共11页
Objective To explore the molecular targets and associated potential pathways of Lycii Fructus(LF,Gou Qi Zi,枸杞子)in the treatment of retinitis pigmentosa(RP)by the approaches of network pharmacology and bioinformatic... Objective To explore the molecular targets and associated potential pathways of Lycii Fructus(LF,Gou Qi Zi,枸杞子)in the treatment of retinitis pigmentosa(RP)by the approaches of network pharmacology and bioinformatics.Methods The potential blood-entry active ingredients and targets of LF were retrieved by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP).RP-related gene targets were retrieved through disease comprehensive databases.Protein-protein interaction(PPI)network of LF component-targets and RP disease-targets was constructed by STRING,and the intersection of the 2 networks was extracted.Gene Ontology and Kyoto Encyclopedia of Genes and Genomes(KEGG)pathway analysis of theintersection network were conducted by Database for Annotation,Visualization and Integrated Discovery(DAVID).CytoHubba was used to screen the key targets.Results A total of 188 chemical constituents related to LF was retrieved from TCMSP database.45 active ingredients were screened according to pharmacokinetic parameters oral bioavailability(OB)and drug similarity(DL).36 active ingredients were further screened and 201 targets related to these constituents were obtained.206 target genes directly related to RP were obtained from the disease comprehensive databases,and 89 genes were obtained from the intersection of componenttarget and disease-target PPI network.These genes were mainly involved in intracellular signal transduction,GTPase activity regulation,cell morphology regulation,and other biological processes.Molecular functions were mainly related to Rho guanine nucleotide exchange factor activity,GTPase activator activity,receptor signal protein serine/threonine kinase activity and so on.They were enriched in the cytoplasm,cell membrane,Golgi apparatus,and other regions.The mechanism was related to cell cycle pathways,neurotrophin signaling pathways,Ras signaling pathways,and so on.10 key gene targets of LF in the treatment of RP were screened.Conclusions The material basis for LF to exert its pharmacodynamic effect is 36 active ingredients such as cycloartenol,mandenol,and so on.The key targets of LF in the treatment of RP include 10 genes,such as Rho,PAK,and so on.The main mechanism is related to the regulation of the Ras signaling pathway,neurotrophin signaling pathway,cell cycle related pathway,and other signaling networks. 展开更多
关键词 Network pharmacology Retinitis pigmentosa Lycii Fructus(Gou Qi Zi 枸杞子) Molecular mechanism target signaling pathway
下载PDF
Effective components and signaling pathways of Ranunculi Ternati Radix based on network pharmacology
11
作者 Ze-Yun Li Zhi-Qiang Chen +1 位作者 Cheng-Xin Liu Yang Cao 《Journal of Hainan Medical University》 2020年第21期53-59,共7页
Objective:This study was designed to find out the active components of Ranunculi Ternati Radix using network pharmacology,and to explore its potential target and pharmacological mechanism.Methods:By the TCMSP database... Objective:This study was designed to find out the active components of Ranunculi Ternati Radix using network pharmacology,and to explore its potential target and pharmacological mechanism.Methods:By the TCMSP database,combined with oral bioavailability(≥30%)analysis and resistance(≥0.18),screening of active ingredients in Ranunculus ternatus Thunb.Retrieve the protein targets of the compounds from the TCMSP database.Associated Proteins and Gene Names were received via UniProt database.The protein interaction network was constructed by applying String database and Cytoscape software.Gene Ontology and Pathway Enrichment Analysis were developed on the basis of DAVID database.Results:10 active compounds including beta-sitosterol,campesterol,Mandenol were selected from Ranunculi Ternati Radix.And it produced its effects on different diseases mainly by regulating targets including PIK3CG,HSP90AA1,BAX and BCL2,which involved signaling pathways containing Pathways in cancer、PI3K-Akt signaling pathway、Hepatitis B、Tuberculosis and so on.Some published papers had confirmed by each other.Meanwhile,this work predics that Ranunculi Ternati Radix had the potential to treat non-alcoholic fatty liver disease.Conclusion:This study preliminarily validated the major targets and pathways of Ranunculi Ternati Radix acting on different diseases,which laid a foundation for further study on its mechanisms. 展开更多
关键词 Ranunculi Ternati Radix Network pharmacology target signaling pathway Component discovery
下载PDF
Research progress of Notch signaling pathway and biological behavior of tumor
12
作者 Su Yan Peng Wang Yi-Dong Wang 《Journal of Hainan Medical University》 2019年第13期72-76,共5页
As an important signal transduction pathway between cells, Notch signaling pathway plays a very important role in cell recognition, proliferation, differentiation ,and apoptosis. At the same time, more and more relate... As an important signal transduction pathway between cells, Notch signaling pathway plays a very important role in cell recognition, proliferation, differentiation ,and apoptosis. At the same time, more and more related studies show that abnormal activation of Notch signaling pathway plays an important role in the occurrence and development of a variety of malignant tumors, and has become a hot topic in the field of tumor research. Instead of focusing on the relationship between Notch signaling pathway and various organ tumors or the relationship between Notch signaling pathway and tumor single regulatory factors, this paper focuses on the role of Notch signaling pathway by summing up and summarizing the role of the signal pathway. A series of biological behaviors of the tumor, such as angiogenesis, invasion, and metastasis, involved in Notch signaling pathway, are reviewed in this paper, as well as the recent advances in the regulation of tumor biological behavior, such as angiogenesis, invasion, metastasis and so on. 展开更多
关键词 TUMOR NOTCH signaling pathway Mechanism target Research PROGRESS
下载PDF
Regulatory Effects of Zuogui Pill on Apoptosis of Follicles in Rats Injured by 60Co-γRays Based on PI3K/Akt/m TOR Signaling Pathway
13
作者 Fenqin ZHAO Mingxia AN +4 位作者 Xiaonan DING Jieying LIU Yan ZHAO Zhihui XIE Shuping LI 《Medicinal Plant》 CAS 2022年第5期45-50,58,共7页
[Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signal... [Objectives]To explore the protective effects of Zuogui Pill on ^(60)Co-γ-ray-induced premature aging of rats based on phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway.[Methods]Sixty sexually mature female SD rats were irradiated with ^(60)Co-γ-ray(6.0 Gy,LD 40)for 24 h at one time.These rats were randomly divided into model group,Progynova group[0.18(g·kg)/d],Progynova[0.09(g·kg)/d]+Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill high dose[23.625(g·kg)/d)]group,Zuogui Pill medium dose[9.45(g·kg)/d)]group and Zuogui Pill low dose[4.725(g·kg)/d]group.The administration(once a day)lasted 21 d.The rat serum[follicle-stimulating hormone(FSH),luteinizing hormone(LH)and estradiol(E_(2))]were detected by Enzyme-linked immunosorbent assay(ELISA).The morphological changes of ovary were observed by hematoxylin-eosin(HE)staining.The apoptosis rate of granulosa cells was detected by terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL).The protein expression of phosphorylated(p)-PI3K,p-Akt,p-mTOR,B-cell lymphoma-2(Bcl-2),and Bcl-2-associated X protein(Bax)in ovarian tissues were detected by Western blot.[Results]Compared with the normal group,the model group showed significant increase in the serum FSH(P<0.01),significant decrease in serum E_(2)(P<0.05),and decrease in the number of early follicles and luteum in the ovary(P<0.01).Besides,the apoptosis rate of granulosa cells increased significantly(P<0.01);the expression of p-PI3K,p-Akt,p-mTOR and Bcl-2 in ovarian tissue decreased significantly,while the expression of Bax increased significantly(P<0.01).Compared with the model group,the number of early follicles in the ovary increased and the apoptosis rate of granulosa cells decreased after intervention in each administration group.In addition,the protein expressions of p-PI3K,p-Akt,p-mTOR and Bcl-2 increased,while the expression of Bax decreased,especially in Progynova+Zuogui Pill high dose group,the differences were statistically significant(P<0.05,P<0.01).[Conclusions]Zuogui Pill may protect the radiation-injured ovary through activating the expression of PI3K/Akt/mTOR protein in ovarian tissue,increasing the amount of Bcl-2 protein and inhibiting the expression of Bax protein. 展开更多
关键词 Radiation injury Premature ovarian failure(Pof) Zuogui Pill Terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick-end labeling(TUNEL) Phosphatidylinositol-3-kinases/protein kinase B/mammalian target of rapamycin(PI3K/Akt/mTOR)signaling pathway B-cell lymphoma-2 Bcl-2-associated X protein
下载PDF
Research Progress of miRNA Regulating Cell Signaling Pathways Related to Hepatocarcinogenesis
14
作者 Dan Wang Xingwu Yang Guotai Wang 《Journal of Clinical and Nursing Research》 2021年第2期100-104,共5页
Hepatocellular carcinoma(HCC)is one of the most common malignant tumors in clinical practice.The pathogenesis of HCC is still unclear.Currently,the clinical treatment of HCC is poorly targeted and the therapeutic effe... Hepatocellular carcinoma(HCC)is one of the most common malignant tumors in clinical practice.The pathogenesis of HCC is still unclear.Currently,the clinical treatment of HCC is poorly targeted and the therapeutic effect is poor.MicroRNAs(miRNAs)are closely related to the occurrence of HCC,and they are mainly involved in the occurrence and development of HCC through binding to target genes or acting on related signaling pathways.In recent years,studies have shown that miRNA can be used as a potential biomarker for diagnosis and prognosis of HCC.In addition,studies have also shown that miRNA plays a tumorsuppressing or tumor-promoting role in the process of HCC by regulating the biological processes of tumor cell proliferation,migration,invasion and metastasis.In this paper,the recent studies on miRNA signaling pathways related to the occurrence and development of HCC were reviewed,with a view to providing ideas for the clinical diagnosis and treatment of HCC. 展开更多
关键词 MICRORNAS target gene regulation Hepatocellular carcinoma Cell signaling pathway
下载PDF
Hedgehog signaling pathway as a new therapeutic target in pancreatic cancer 被引量:19
15
作者 Hideya Onishi Mitsuo Katano 《World Journal of Gastroenterology》 SCIE CAS 2014年第9期2335-2342,共8页
Pancreatic cancer is one of the most aggressive and difficult cancers to treat.Despite numerous research efforts,limited success has been achieved in the therapeutic management of patients with this disease.In the cur... Pancreatic cancer is one of the most aggressive and difficult cancers to treat.Despite numerous research efforts,limited success has been achieved in the therapeutic management of patients with this disease.In the current review,we focus on one component of morphogenesis signaling,Hedgehog(Hh),with the aim of developing novel,effective therapies for the treatment of pancreatic cancer.Hh signaling contributes to the induction of a malignant phenotype in pancreatic cancer and is responsible for maintaining pancreatic cancer stem cells.In addition,we propose a novel concept linking Hh signaling and tumor hypoxic conditions,and discuss the effects of Hh inhibitors in clinical trials.The Hh signaling pathway may represent a potential therapeutic target for patients with refractory pancreatic cancer. 展开更多
关键词 Hedgehog signaling pathway Pancreatic cancer Cancer stem cells Hypoxic condition Therapeutic target
下载PDF
Glypican-3 is a biomarker and a therapeutic target of hepatocellular carcinoma 被引量:12
16
作者 Li Wang Min Yao +2 位作者 Liu-Hong Pan Qi Qian Deng-Fu Yao 《Hepatobiliary & Pancreatic Diseases International》 SCIE CAS CSCD 2015年第4期361-366,共6页
BACKGROUND: The carcinogenesis of hepatocellular car- cinoma (HCC) is a multi-factorial, multi-step and complex process. Early diagnosis and effective treatments are of utmost importance. This review summarized the... BACKGROUND: The carcinogenesis of hepatocellular car- cinoma (HCC) is a multi-factorial, multi-step and complex process. Early diagnosis and effective treatments are of utmost importance. This review summarized the recent studies of on- cofetal glypican-3 (GPC-3), a membrane-associated heparan sulfate proteoglycan, in the diagnosis and treatment of HCC. DATA SOURCES: English-language reports published from Iune 2001 to September 2014 were searched from MEDLINE. The key words searched included: GPC-3, biomarker, target and HCC. The sensitivity, specificity, positive and negative predictive values were extracted, and the effect of GPC-3 tar- geted therapy on HCC was also evaluated. RESULTS: GPC-3 plays a crucial role in HCC cell prolifera- tion and metastasis. It mediates oncogenesis involving signal- ing pathways during hepatocyte malignant transformation. GPC-3 expression is increased in atypical hyperplasia and cancerous tissues. GPC-3 levels in HCC patients are related to HBV infection, TNM stage, periportal cancerous embolus, and extrahepatic metastasis. The diagnostic accuracy of the combination of serum GPC-3 and alpha-fetoprotein in HCC is up to 94.3%. Down-regulation of GPC-3 with specific siRNA or anti-GPC-3 antibody alters cell migration, metastasis and invasion behaviors. The nude mice xenograft tumor growth is inhibited by silencing GPC-3 gene transcription.CONCLUSION: Oncofetal GPC-3 is a highly specific biomark- er for the diagnosis of HCC and a promising target molecule for HCC gene therapy. 展开更多
关键词 hepatocellular carcinoma GLYPICAN-3 signal pathways DIAGNOSIS targeted therapy
下载PDF
Innate immune targets of hepatitis B virus infection 被引量:11
17
作者 Zhi-Qiang Zou Li Wang +1 位作者 Kai Wang Ji-Guang Yu 《World Journal of Hepatology》 CAS 2016年第17期716-725,共10页
Approximately 400 million people are chronically infected with hepatitis B virus(HBV) globally despitethe widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HB... Approximately 400 million people are chronically infected with hepatitis B virus(HBV) globally despitethe widespread immunization of HBV vaccine and the development of antiviral therapies. The immunopathogenesis of HBV infection is initiated and driven by complexed interactions between the host immune system and the virus. Host immune responses to viral particles and proteins are regarded as the main determinants of viral clearance or persistent infection and hepatocyte injury. Innate immune system is the first defending line of host preventing from virus invasion. It is acknowledged that HBV has developed active tactics to escape innate immune recognition or actively interfere with innate immune signaling pathways and induce immunosuppression, which favor their replication. HBV reduces the expression of pattern-recognition receptors in the innate immune cells in humans. Also, HBV may interrupt different parts of antiviral signaling pathways, leading to the reduced production of antiviral cytokines such as interferons that contribute to HBV immunopathogenesis. A full comprehension of the mechanisms as to how HBV inactivates various elements of the innate immune response to initiate and maintain a persistent infection can be helpful in designing new immunotherapeutic methods for preventing and eradicating the virus. In this review, we aimed to summarize different branches the innate immune targeted by HBV infection. The review paper provides evidence that multiple components of immune responses should be activated in combination with antiviral therapy to disrupt the tolerance to HBV for eliminating HBV infection. 展开更多
关键词 HEPATITIS B VIRUS INFECTION targetS INNATE IMMUNE response signaling pathway
下载PDF
Blockage of ETS homologous factor inhibits the proliferation and invasion of gastric cancer cells through the c-Met pathway 被引量:4
18
作者 Meng-Li Gu Xin-Xin Zhou +6 位作者 Meng-Ting Ren Ke-Da Shi Mo-Sang Yu Wen-Rui Jiao Ya-Mei Wang Wei-Xiang Zhong Feng Ji 《World Journal of Gastroenterology》 SCIE CAS 2020年第47期7497-7512,共16页
BACKGROUND Gastric cancer(GC)is one of the most common and deadliest types of cancer worldwide due to its delayed diagnosis and high metastatic frequency,but its exact pathogenesis has not been fully elucidated.ETS ho... BACKGROUND Gastric cancer(GC)is one of the most common and deadliest types of cancer worldwide due to its delayed diagnosis and high metastatic frequency,but its exact pathogenesis has not been fully elucidated.ETS homologous factor(EHF)is an important member of the ETS family and contributes to the pathogenesis of multiple malignant tumors.To date,whether EHF participates in the development of GC via the c-Met signaling pathway remains unclear.AIM To investigate the role and mechanism of EHF in the occurrence and development of GC.METHODS The expression of EHF mRNA in GC tissues and cell lines was measured by quantitative PCR.Western blotting was performed to determine the protein expression of EHF,c-Met,and its downstream signal molecules.The EHF expression in GC tissues was further detected by immunohistochemical staining.To investigate the role of EHF in GC oncogenesis,small interfering RNA(siRNA)against EHF was transfected into GC cells.The cell proliferation of GC cells was determined by Cell Counting Kit-8 and colony formation assays.Flow cytometry was performed following Annexin V/propidium iodide(PI)to identify apoptotic cells and PI staining to analyze the cell cycle.Cell migration and invasion were assessed by transwell assays.RESULTS The data showed that EHF was upregulated in GC tissues and cell lines in which increased expression of c-Met was also observed.Silencing of EHF by siRNA reduced the proliferation of GC cells.Inhibition of EHF induced significant apoptosis and cell cycle arrest in GC cells.Cell migration and invasion were significantly inhibited.EHF silencing led to c-Met downregulation and further blocked the Ras/c-Raf/extracellular signal-related kinase 1/2(Erk1/2)pathway.Additionally,phosphatase and tensin homolog was upregulated and glycogen synthase kinase 3 beta was deactivated.Moreover,inactivation of signal transducer and activator of transcription 3 was detected following EHF inhibition,leading to inhibition of the epithelial-to-mesenchymal transition(EMT).CONCLUSION These results suggest that EHF plays a key role in cell proliferation,invasion,apoptosis,the cell cycle and EMT via the c-Met pathway.Therefore,EHF may serve as an antineoplastic target for the diagnosis and treatment of GC. 展开更多
关键词 Gastric cancer ETS homologous factor C-MET Antineoplastic target signaling pathway
下载PDF
Application and prospects of proteomic technology in inflammation:a review
19
作者 Senye Wang Yanhai Chu +4 位作者 Jiajia Yuan Yiqi Li Zhenhua Liu Xiaoyu Chen Wenyi Kang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2373-2385,共13页
Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the... Proteomics is a new technology that has been widely applied in the field of life and health science.It effectively addresses issues related to the impact of dietary structure on organs,tissues,and cells,as well as the changes in proteins in various organs,tissues,and cells under disease conditions.The differential proteins identified through proteomics can serve as disease biomarkers and target proteins affecting health and can be used for disease diagnosis and health regulation.In this paper,the application of proteomics in the field of infl ammation in recent years was summarized,especially in the therapeutic target and mechanism of action,which opens up a new way for more effective prevention,diagnosis,and treatment of inflammation,and provides medical protection for human life and health. 展开更多
关键词 Proteomics technology INFLAMMATION Biomarkers Potential target signaling pathway
下载PDF
Notch signalling pathway in development of cholangiocarcinoma 被引量:4
20
作者 Bisma Rauff Arif Malik +3 位作者 Yasir Ali Bhatti Shafiq Ahmad Chudhary Ishtiaq Qadri Shafquat Rafiq 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2020年第9期957-974,共18页
Cholangiocarcinoma(CCA)comprises of extra-hepatic cholangiocarcinoma and intrahepatic cholangiocarcinoma cancers as a result of inflammation of epithelium cell lining of the bile duct.The incidence rate is increasing ... Cholangiocarcinoma(CCA)comprises of extra-hepatic cholangiocarcinoma and intrahepatic cholangiocarcinoma cancers as a result of inflammation of epithelium cell lining of the bile duct.The incidence rate is increasing dramatically worldwide with highest rates in Eastern and South Asian regions.Major risk factors involve chronic damage and inflammation of bile duct epithelium from primary sclerosing cholangitis,chronic hepatitis virus infection,gallstones and liver fluke infection.Various genetic variants have also been identified and as CCA develops on the background of biliary inflammation,diverse range of molecular mechanisms are involved in its progression.Among these,the Notch signalling pathway acts as a major driver of cholangiocarcinogenesis and its components(receptors,ligands and downstream signalling molecules)represent a promising therapeutic targets.Gamma-Secretase Inhibitors have been recognized in inhibiting the Notch pathway efficiently.A comprehensive knowledge of the molecular pathways activated by the Notch signalling cascade as well as its functional crosstalk with other signalling pathways provide better approach in developing innovative therapies against CCA. 展开更多
关键词 Cholangicarcinoma Notch receptors Therapeutic targets Notch signalling pathway Gamma secretase inhibitor CHOLANGIOCYTES
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部