For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to p...For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.展开更多
Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samp...Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samples.In this paper,we introduce GAN into the field of electromagnetic signal classification(ESC).ESC plays an important role in both military and civilian domains.However,in many specific scenarios,we can’t obtain enough labeled data,which cause failure of deep learning methods because they are easy to fall into over-fitting.Fortunately,semi-supervised learning(SSL)can leverage the large amount of unlabeled data to enhance the classification performance of classifiers,especially in scenarios with limited amount of labeled data.We present an SSL framework by incorporating GAN,which can directly process the raw in-phase and quadrature(IQ)signal data.According to the characteristics of the electromagnetic signal,we propose a weighted loss function,leading to an effective classifier to realize the end-to-end classification of the electromagnetic signal.We validate the proposed method on both public RML2016.04c dataset and real-world Aircraft Communications Addressing and Reporting System(ACARS)signal dataset.Extensive experimental results show that the proposed framework obtains a significant increase in classification accuracy compared with the state-of-the-art studies.展开更多
Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, a...Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).展开更多
In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too...In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.展开更多
This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array...This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.展开更多
A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefr...A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefrequency scalogram.Then,the GLF extraction method is proposed to extract features from the time-frequency scalogram.Finally,a classification method based on the support vector machine(SVM)is proposed to classify the extracted features.Experimental results show that the extended binary phase shift keying(EBPSK)bit error rate(BER)of the proposed classification algorithm is1.3x10_5under the environment of additional white Gaussian noise with the signal-to-noise ratio of-3dB,which is24times lower than that of the SVM-based signal classification method.Meanwhile,the BER using the GLF extraction method is13times lower than the one using the global feature extraction method and24times lower than the one using the local feature extraction method.展开更多
Today,electroencephalography is used to measure brain activity by creating signals that are viewed on a monitor.These signals are frequently used to obtain information about brain neurons and may detect disorders that...Today,electroencephalography is used to measure brain activity by creating signals that are viewed on a monitor.These signals are frequently used to obtain information about brain neurons and may detect disorders that affect the brain,such as epilepsy.Electroencephalogram(EEG)signals are however prone to artefacts.These artefacts must be removed to obtain accurate and meaningful signals.Currently,computer-aided systems have been used for this purpose.These systems provide high computing power,problem-specific development,and other advantages.In this study,a new clinical decision support system was developed for individuals to detect epileptic seizures using EEG signals.Comprehensive classification results were obtained for the extracted filtered features from the time-frequency domain.The classification accuracies of the time-frequency features obtained from discrete continuous transform(DCT),fractional Fourier transform(FrFT),and Hilbert transform(HT)are compared.Artificial neural networks(ANN)were applied,and back propagation(BP)was used as a learning method.Many studies in the literature describe a single BP algorithm.In contrast,we looked at several BP algorithms including gradient descent with momentum(GDM),scaled conjugate gradient(SCG),and gradient descent with adaptive learning rate(GDA).The most successful algorithm was tested using simulations made on three separate datasets(DCT_EEG,FrFT_EEG,and HT_EEG)that make up the input data.The HT algorithm was the most successful EEG feature extractor in terms of classification accuracy rates in each EEG dataset and had the highest referred accuracy rates of the algorithms.As a result,HT_EEG gives the highest accuracy for all algorithms,and the highest accuracy of 87.38%was produced by the SCG algorithm.展开更多
The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract ...The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them.Thus,a computerized system is needed to classify ECG signals with more accurate results effectively.Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths.In this work,a Computerized Abnormal Heart Rhythms Detection(CAHRD)system is developed using ECG signals.It consists of four stages;preprocessing,feature extraction,feature optimization and classifier.At first,Pan and Tompkins algorithm is employed to detect the envelope of Q,R and S waves in the preprocessing stage.It uses a recursive filter to eliminate muscle noise,T-wave interference and baseline wander.As the analysis of ECG signal in the spatial domain does not provide a complete description of the signal,the feature extraction involves using frequency contents obtained from multiple wavelet filters;bi-orthogonal,Symlet and Daubechies at different resolution levels in the feature extraction stage.Then,Black Widow Optimization(BWO)is applied to optimize the hybrid wavelet features in the feature optimization stage.Finally,a kernel based Support Vector Machine(SVM)is employed to classify heartbeats into five classes.In SVM,Radial Basis Function(RBF),polynomial and linear kernels are used.A total of∼15000 ECG signals are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia database for performance evaluation of the proposed CAHRD system.Results show that the proposed CAHRD system proved to be a powerful tool for ECG analysis.It correctly classifies five classes of heartbeats with 99.91%accuracy using an RBF kernel with 2nd level wavelet coefficients.The CAHRD system achieves an improvement of∼6%over random projections with the ensemble SVM approach and∼2%over morphological and ECG segment based features with the RBF classifier.展开更多
Classification of speech signals is a vital part of speech signal processing systems.With the advent of speech coding and synthesis,the classification of the speech signal is made accurate and faster.Conventional meth...Classification of speech signals is a vital part of speech signal processing systems.With the advent of speech coding and synthesis,the classification of the speech signal is made accurate and faster.Conventional methods are considered inaccurate due to the uncertainty and diversity of speech signals in the case of real speech signal classification.In this paper,we use efficient speech signal classification using a series of neural network classifiers with reinforcement learning operations.Prior classification of speech signals,the study extracts the essential features from the speech signal using Cepstral Analysis.The features are extracted by converting the speech waveform to a parametric representation to obtain a relatively minimized data rate.Hence to improve the precision of classification,Generative Adversarial Networks are used and it tends to classify the speech signal after the extraction of features from the speech signal using the cepstral coefficient.The classifiers are trained with these features initially and the best classifier is chosen to perform the task of classification on new datasets.The validation of testing sets is evaluated using RL that provides feedback to Classifiers.Finally,at the user interface,the signals are played by decoding the signal after being retrieved from the classifier back based on the input query.The results are evaluated in the form of accuracy,recall,precision,f-measure,and error rate,where generative adversarial network attains an increased accuracy rate than other methods:Multi-Layer Perceptron,Recurrent Neural Networks,Deep belief Networks,and Convolutional Neural Networks.展开更多
A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to pro...A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor).展开更多
The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple ta...The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm.展开更多
This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"ma...This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"massive multiple-input multiple-output(MIMO)").We consider a time-division duplexing(TDD)scheme,in which reciprocity between the uplink and downlink channels can be assumed.Channel estimation is essential for downlink beamforming in massive MIMO,nevertheless,the pilot contamination effect hinders accurate channel estimation,which leads to overall performance degradation.Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals(AOAs)in the large-scale antenna system,we propose a multiple signals classification(MUSIC)based channel estimation algorithm during the uplink transmission.Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.展开更多
The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (M...The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.展开更多
A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metr...A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metropolis-Hastings (MH) sampler, one of the most popular Markov Chain Monte Carlo (MCMC) techniques, to sample from it. The proposed method reduces greatly the tremendous computation and storage costs in conventional MUSIC techniques i.e., about two and four orders of magnitude in computation and storage costs under the conditions of the experiment in the paper respectively.展开更多
Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the F...Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the FFT technique is resolution limited, so that the FFT-based algorithms will fail in the rotation velocity(RV) estimation of the slow rotation target. In this paper,we propose an accurate cross-range scaling algorithm based on the multiple signal classification(MUSIC) method. We first select some range bins with the mono-component linear frequency modulated(LFM) signal model. Then, we dechirp the signal of each selected range bin into the form of sinusoidal signal, and utilize the super-resolution MUSIC technique to accurately estimate the frequency. After processing all the range bins, a linear relationship related to the RV can be obtained. Eventually, the ISAR image can be scaled. The proposal can precisely estimate the small RV of the slow rotation target with low computational complexity. Furthermore, the proposal can also be used in the case of cross-range scaling for the sparse aperture data. Experimental results with the simulated and raw data validate the superiority of the novel method.展开更多
An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated b...An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.展开更多
In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC ...In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.展开更多
This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectiv...This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectively utilizes the polarization domain information of incident signals,and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction.The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom(DOFs).The quaternion data model based on vector MISC arrays is established,which extends the scalar MISC array into the vector MISC array.Based on the model,a quaternion multiple signal classification(MUSIC)algorithm based on vector MISC arrays is proposed for DOA estimation.The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance.Analytical simulations are performed to certify the capability of the algorithm.展开更多
The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this metho...The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.展开更多
In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can b...In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.展开更多
基金supported by the National Natural Science Foundation of China(61371172)the International S&T Cooperation Program of China(2015DFR10220)+1 种基金the Ocean Engineering Project of National Key Laboratory Foundation(1213)the Fundamental Research Funds for the Central Universities(HEUCF1608)
文摘For the multi-mode radar working in the modern electronicbattlefield, different working states of one single radar areprone to being classified as multiple emitters when adoptingtraditional classification methods to process intercepted signals,which has a negative effect on signal classification. A classificationmethod based on spatial data mining is presented to address theabove challenge. Inspired by the idea of spatial data mining, theclassification method applies nuclear field to depicting the distributioninformation of pulse samples in feature space, and digs out thehidden cluster information by analyzing distribution characteristics.In addition, a membership-degree criterion to quantify the correlationamong all classes is established, which ensures classificationaccuracy of signal samples. Numerical experiments show that thepresented method can effectively prevent different working statesof multi-mode emitter from being classified as several emitters,and achieve higher classification accuracy.
基金the National Natural Science Foundation of China(Nos.61771380,U19B2015,U1730109).
文摘Generative adversarial network(GAN)has achieved great success in many fields such as computer vision,speech processing,and natural language processing,because of its powerful capabilities for generating realistic samples.In this paper,we introduce GAN into the field of electromagnetic signal classification(ESC).ESC plays an important role in both military and civilian domains.However,in many specific scenarios,we can’t obtain enough labeled data,which cause failure of deep learning methods because they are easy to fall into over-fitting.Fortunately,semi-supervised learning(SSL)can leverage the large amount of unlabeled data to enhance the classification performance of classifiers,especially in scenarios with limited amount of labeled data.We present an SSL framework by incorporating GAN,which can directly process the raw in-phase and quadrature(IQ)signal data.According to the characteristics of the electromagnetic signal,we propose a weighted loss function,leading to an effective classifier to realize the end-to-end classification of the electromagnetic signal.We validate the proposed method on both public RML2016.04c dataset and real-world Aircraft Communications Addressing and Reporting System(ACARS)signal dataset.Extensive experimental results show that the proposed framework obtains a significant increase in classification accuracy compared with the state-of-the-art studies.
文摘Ambiguity function (AF) is proposed to represent ultrasonic signal to resolve the preprocessing problem of different center frequencies and different arriving times among ultrasonic signals for feature extraction, as well as offer time-frequency features for signal classification. Moreover, Karhunen-Loeve (K-L) transform is considered to extract signal features from ambiguity plane, and then the features are presented to probabilistic neural network (PNN) for signal classification. Experimental results show that ambiguity function eliminates the difference of center frequency and arriving time existing in ultrasonic signals, and ambiguity plane features extracted by K-L transform describe the signal of different classes effectively in a reduced dimensional space. Classification result suggests that the ambiguity plane features obtain better performance than the features extracted by wavelet transform (WT).
基金the Youth Science and Technology Foundection of University of Electronic Science andTechnology of China (JX0622).
文摘In most of the passive tracking systems, only the target kinematical information is used in the measurement-to-track association, which results in error tracking in a multitarget environment, where the targets are too close to each other. To enhance the tracking accuracy, the target signal classification information (TSCI) should be used to improve the data association. The TSCI is integrated in the data association process using the JPDA (joint probabilistic data association). The use of the TSCI in the data association can improve discrimination by yielding a purer track and preserving continuity. To verify the validity of the application of TSCI, two simulation experiments are done on an air target-tracing problem, that is, one using the TSCI and the other not using the TSCI. The final comparison shows that the use of the TSCI can effectively improve tracking accuracy.
基金supported by the National Natural Science Foundation of China(6117119761371045+2 种基金61201307)the Shandong Provincial Natural Science Foundation(ZR2011FM005)the Shandong Provincial Promotive Research Fund for Excellent Young and Middle-aged Scientists(BS2010DX001)
文摘This paper addresses the issue of the direction of arrival (DOA) estimation under the compressive sampling (CS) framework. A novel approach, modified multiple signal classification (MMUSIC) based on the CS array (CSA-MMUSIC), is proposed to resolve the DOA estimation of correlated signals and two closely adjacent signals. By using two random CS matrices, a large size array is compressed into a small size array, which effectively reduces the number of the front end circuit. The theoretical analysis demonstrates that the proposed approach has the advantages of low computational complexity and hardware structure compared to other MMUSIC approaches. Simulation results show that CSAMMUSIC can possess similar angular resolution as MMUSIC.
基金The National Key Technology R&D Program(No.2012BAH15B00)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.KYLX150076)
文摘A continuous wavelet transform(CWT)and globallocal feature(GLF)extraction-based signal classificationalgorithm is proposed to improve the signal classification accuracy.First,the CWT is utilized to generate the timefrequency scalogram.Then,the GLF extraction method is proposed to extract features from the time-frequency scalogram.Finally,a classification method based on the support vector machine(SVM)is proposed to classify the extracted features.Experimental results show that the extended binary phase shift keying(EBPSK)bit error rate(BER)of the proposed classification algorithm is1.3x10_5under the environment of additional white Gaussian noise with the signal-to-noise ratio of-3dB,which is24times lower than that of the SVM-based signal classification method.Meanwhile,the BER using the GLF extraction method is13times lower than the one using the global feature extraction method and24times lower than the one using the local feature extraction method.
基金This study was supported by The Scientific Technological Research Council of Turkey(TÜBITAK)under the Project No.118E682.
文摘Today,electroencephalography is used to measure brain activity by creating signals that are viewed on a monitor.These signals are frequently used to obtain information about brain neurons and may detect disorders that affect the brain,such as epilepsy.Electroencephalogram(EEG)signals are however prone to artefacts.These artefacts must be removed to obtain accurate and meaningful signals.Currently,computer-aided systems have been used for this purpose.These systems provide high computing power,problem-specific development,and other advantages.In this study,a new clinical decision support system was developed for individuals to detect epileptic seizures using EEG signals.Comprehensive classification results were obtained for the extracted filtered features from the time-frequency domain.The classification accuracies of the time-frequency features obtained from discrete continuous transform(DCT),fractional Fourier transform(FrFT),and Hilbert transform(HT)are compared.Artificial neural networks(ANN)were applied,and back propagation(BP)was used as a learning method.Many studies in the literature describe a single BP algorithm.In contrast,we looked at several BP algorithms including gradient descent with momentum(GDM),scaled conjugate gradient(SCG),and gradient descent with adaptive learning rate(GDA).The most successful algorithm was tested using simulations made on three separate datasets(DCT_EEG,FrFT_EEG,and HT_EEG)that make up the input data.The HT algorithm was the most successful EEG feature extractor in terms of classification accuracy rates in each EEG dataset and had the highest referred accuracy rates of the algorithms.As a result,HT_EEG gives the highest accuracy for all algorithms,and the highest accuracy of 87.38%was produced by the SCG algorithm.
文摘The non-invasive evaluation of the heart through EectroCardioG-raphy(ECG)has played a key role in detecting heart disease.The analysis of ECG signals requires years of learning and experience to interpret and extract useful information from them.Thus,a computerized system is needed to classify ECG signals with more accurate results effectively.Abnormal heart rhythms are called arrhythmias and cause sudden cardiac deaths.In this work,a Computerized Abnormal Heart Rhythms Detection(CAHRD)system is developed using ECG signals.It consists of four stages;preprocessing,feature extraction,feature optimization and classifier.At first,Pan and Tompkins algorithm is employed to detect the envelope of Q,R and S waves in the preprocessing stage.It uses a recursive filter to eliminate muscle noise,T-wave interference and baseline wander.As the analysis of ECG signal in the spatial domain does not provide a complete description of the signal,the feature extraction involves using frequency contents obtained from multiple wavelet filters;bi-orthogonal,Symlet and Daubechies at different resolution levels in the feature extraction stage.Then,Black Widow Optimization(BWO)is applied to optimize the hybrid wavelet features in the feature optimization stage.Finally,a kernel based Support Vector Machine(SVM)is employed to classify heartbeats into five classes.In SVM,Radial Basis Function(RBF),polynomial and linear kernels are used.A total of∼15000 ECG signals are obtained from the Massachusetts Institute of Technology-Beth Israel Hospital(MIT-BIH)arrhythmia database for performance evaluation of the proposed CAHRD system.Results show that the proposed CAHRD system proved to be a powerful tool for ECG analysis.It correctly classifies five classes of heartbeats with 99.91%accuracy using an RBF kernel with 2nd level wavelet coefficients.The CAHRD system achieves an improvement of∼6%over random projections with the ensemble SVM approach and∼2%over morphological and ECG segment based features with the RBF classifier.
文摘Classification of speech signals is a vital part of speech signal processing systems.With the advent of speech coding and synthesis,the classification of the speech signal is made accurate and faster.Conventional methods are considered inaccurate due to the uncertainty and diversity of speech signals in the case of real speech signal classification.In this paper,we use efficient speech signal classification using a series of neural network classifiers with reinforcement learning operations.Prior classification of speech signals,the study extracts the essential features from the speech signal using Cepstral Analysis.The features are extracted by converting the speech waveform to a parametric representation to obtain a relatively minimized data rate.Hence to improve the precision of classification,Generative Adversarial Networks are used and it tends to classify the speech signal after the extraction of features from the speech signal using the cepstral coefficient.The classifiers are trained with these features initially and the best classifier is chosen to perform the task of classification on new datasets.The validation of testing sets is evaluated using RL that provides feedback to Classifiers.Finally,at the user interface,the signals are played by decoding the signal after being retrieved from the classifier back based on the input query.The results are evaluated in the form of accuracy,recall,precision,f-measure,and error rate,where generative adversarial network attains an increased accuracy rate than other methods:Multi-Layer Perceptron,Recurrent Neural Networks,Deep belief Networks,and Convolutional Neural Networks.
文摘A new method of fault analysis and detection by signal classification inrotating machines is presented. The Local Wave time-frequency spectrum which is a new method forprocessing a non-stationary signal is used to produce the representation of the signal. This methodallows the decomposition of one-dimensional signals into intrinsic mode functions (IMFs) usingempirical mode decomposition and the calculation of a meaningful multi-component instantaneousfrequency. Applied to fault signals , it provides new time-frequency attributes. Then the momentsand margins of the time-frequency spectrum are calculated as the feature vectors. The probabilisticneural network is used to classify different fault modes. The accuracy and robustness of theproposed methods is investigated on signals obtained during the different fault modes (early rub,loose, misalignment of the rotor).
文摘The frequency-modulated continuous wave (FMCW) radar, known for its high range resolution, has garnered significant attention in the field of non-contact vital sign monitoring. However, accurately locating multiple targets and separating their vital sign signals remains a challenging research topic. This paper proposes a scene-differentiated method for multi-target localization and vital sign monitoring. The approach identifies the relative positions of multiple targets using Range FFT and determines the directions of targets via the multiple signal classification (MUSIC) algorithm. Phase signals within the range bins corresponding to the targets are separated using bandpass filtering. If multiple targets reside in the same range bin, the variational mode decomposition (VMD) algorithm is employed to decompose their breathing or heartbeat signals. Experimental results demonstrate that the proposed method accurately localizes targets. When multiple targets occupy the same range bin, the mean absolute error (MAE) for respiratory signals is 3 bpm, and the MAE for heartbeat signals is 5 bpm.
文摘This paper addresses the problem of channel estimation in a multiuser multi-cell wireless communications system in which the base station(BS)is equipped with a very large number of antennas(also referred to as"massive multiple-input multiple-output(MIMO)").We consider a time-division duplexing(TDD)scheme,in which reciprocity between the uplink and downlink channels can be assumed.Channel estimation is essential for downlink beamforming in massive MIMO,nevertheless,the pilot contamination effect hinders accurate channel estimation,which leads to overall performance degradation.Benefitted from the asymptotic orthogonality between signal and interference subspaces for non-overlapping angle-of arrivals(AOAs)in the large-scale antenna system,we propose a multiple signals classification(MUSIC)based channel estimation algorithm during the uplink transmission.Analytical and numerical results verify complete pilot decontamination and the effectiveness of the proposed channel estimation algorithm in the multiuser multi-cell massive MIMO system.
基金supported by the National Natural Science Foundation of China(6137116961301108+1 种基金61071164)the Fundamental Research Funds for the Central Universities(NS2013024)
文摘The problem of channel estimation for multiple an- tenna orthogonal frequency division multiplexing (OFDM) systems subject to unknown carrier frequency offset (CFO) is addressed. Multiple signal classification (MUSIC)-Iike algorithm, which generally has been used for direction estimation or frequency estimation, is used for channel estimation in multiple antenna OFDM systems. A reduced dimensional (RD)-MUSIC based algorithm for channel estimation is proposed in multiple antenna OFDM systems with unknown CFO. The Cramer-Rao bound (CRB) of channel estimation in multiple antenna OFDM systems with unknown CFO is derived. The proposed algorithm has a superior performance of channel estimation compared with the Capon method and the least squares method.
基金Supported by the National Natural Science Foundation of China (No.60172028).
文摘A fast MUltiple SIgnal Classification (MUSIC) spectrum peak search algorithm is devised, which regards the power of the MUSIC spectrum function as target distribution up to a constant of proportionality, and uses Metropolis-Hastings (MH) sampler, one of the most popular Markov Chain Monte Carlo (MCMC) techniques, to sample from it. The proposed method reduces greatly the tremendous computation and storage costs in conventional MUSIC techniques i.e., about two and four orders of magnitude in computation and storage costs under the conditions of the experiment in the paper respectively.
基金supported by the National Natural Science Foundation of China (61871146,61622107)the China Scholarship Council(201906120113)。
文摘Cross-range scaling plays an important role in the inverse synthetic aperture radar(ISAR) imaging. Many of the published cross-range scaling algorithms are based on the fast Fourier transformation(FFT). However, the FFT technique is resolution limited, so that the FFT-based algorithms will fail in the rotation velocity(RV) estimation of the slow rotation target. In this paper,we propose an accurate cross-range scaling algorithm based on the multiple signal classification(MUSIC) method. We first select some range bins with the mono-component linear frequency modulated(LFM) signal model. Then, we dechirp the signal of each selected range bin into the form of sinusoidal signal, and utilize the super-resolution MUSIC technique to accurately estimate the frequency. After processing all the range bins, a linear relationship related to the RV can be obtained. Eventually, the ISAR image can be scaled. The proposal can precisely estimate the small RV of the slow rotation target with low computational complexity. Furthermore, the proposal can also be used in the case of cross-range scaling for the sparse aperture data. Experimental results with the simulated and raw data validate the superiority of the novel method.
基金supported by the National Natural Science Foundation of China(6130127161331007)+2 种基金the Specialized Research Fund for the Doctoral Program of Higher Education of China(2011018512000820120185130001)the Fundamental Research Funds for Central Universities(ZYGX2012J043)
文摘An efficient hybrid time reversal(TR) imaging method based on signal subspace and noise subspace is proposed for electromagnetic superresolution detecting and imaging. First, the locations of targets are estimated by the transmitting-mode decomposition of the TR operator(DORT) method employing the signal subspace. Then, the TR multiple signal classification(TR-MUSIC)method employing the noise subspace is used in the estimated target area to get the superresolution imaging of targets. Two examples with homogeneous and inhomogeneous background mediums are considered, respectively. The results show that the proposed hybrid method has advantages in CPU time and memory cost because of the combination of rough and fine imaging.
基金supported by the National Natural Science Foundation of China(6192100162022091)the Natural Science Foundation of Hunan Province(2017JJ3368).
文摘In this paper,we propose a beam space coversion(BSC)-based approach to achieve a single near-field signal local-ization under uniform circular array(UCA).By employing the centro-symmetric geometry of UCA,we apply BSC to extract the two-dimensional(2-D)angles of near-field signal in the Van-dermonde form,which allows for azimuth and elevation angle estimation by utilizing the improved estimation of signal para-meters via rotational invariance techniques(ESPRIT)algorithm.By substituting the calculated 2-D angles into the direction vec-tor of near-field signal,the range parameter can be conse-quently obtained by the 1-D multiple signal classification(MU-SIC)method.Simulations demonstrate that the proposed al-gorithm can achieve a single near-field signal localization,which can provide satisfactory performance and reduce computational complexity.
基金supported by the National Natural Science Foundation of China(62031015).
文摘This paper examines the direction of arrival(DOA)estimation for polarized signals impinging on a sparse vector sensor array which is based on the maximum interelement spacing constraint(MISC).The vector array effectively utilizes the polarization domain information of incident signals,and the quaternion model is adopted for signals polarization characteristic maintenance and computational burden reduction.The features of MISC arrays are crucial to the mutual coupling effects reduction and higher degrees of freedom(DOFs).The quaternion data model based on vector MISC arrays is established,which extends the scalar MISC array into the vector MISC array.Based on the model,a quaternion multiple signal classification(MUSIC)algorithm based on vector MISC arrays is proposed for DOA estimation.The algorithm combines the advantages of the quaternion model and the vector MISC array to enhance the DOA estimation performance.Analytical simulations are performed to certify the capability of the algorithm.
基金supported by the National Natural Science Foundation of China(61501142)the Shandong Provincial Natural Science Foundation(ZR2014FQ003)+1 种基金the Special Foundation of China Postdoctoral Science(2016T90289)the China Postdoctoral Science Foundation(2015M571414)
文摘The root multiple signal classification(root-MUSIC) algorithm is one of the most important techniques for direction of arrival(DOA) estimation. Using a uniform linear array(ULA) composed of M sensors, this method usually estimates L signal DOAs by finding roots that lie closest to the unit circle of a(2M-1)-order polynomial, where L 〈 M. A novel efficient root-MUSIC-based method for direction estimation is presented, in which the order of polynomial is efficiently reduced to 2L. Compared with the unitary root-MUSIC(U-root-MUSIC) approach which involves real-valued computations only in the subspace decomposition stage, both tasks of subspace decomposition and polynomial rooting are implemented with real-valued computations in the new technique,which hence shows a significant efficiency advantage over most state-of-the-art techniques. Numerical simulations are conducted to verify the correctness and efficiency of the new estimator.
文摘In this paper,a time-frequency associated multiple signal classification(MUSIC)al-gorithm which is suitable for through-wall detection is proposed.The technology of detecting hu-man targets by through-wall radar can be used to monitor the status and the location information of human targets behind the wall.However,the detection is out of order when classical MUSIC al-gorithm is applied to estimate the direction of arrival.In order to solve the problem,a time-fre-quency associated MUSIC algorithm suitable for through-wall detection and based on S-band stepped frequency continuous wave(SFCW)radar is researched.By associating inverse fast Fouri-er transform(IFFT)algorithm with MUSIC algorithm,the power enhancement of the target sig-nal is completed according to the distance calculation results in the time domain.Then convert the signal to the frequency domain for direction of arrival(DOA)estimation.The simulations of two-dimensional human target detection in free space and the processing of measured data are com-pleted.By comparing the processing results of the two algorithms on the measured data,accuracy of DOA estimation of proposed algorithm is more than 75%,which is 50%higher than classical MUSIC algorithm.It is verified that the distance and angle of human target can be effectively de-tected via proposed algorithm.