期刊文献+
共找到768篇文章
< 1 2 39 >
每页显示 20 50 100
Research on Silicon Carbide Dispersion-Reinforced Hypereutectic Aluminum-Silicon Electronic Packaging Materials
1
作者 Ruixi Guo Yunhao Hua Tianze Jia 《Journal of Electronic Research and Application》 2024年第2期86-94,共9页
The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon elect... The objective of this study is to improve the mechanical properties and machining performance of high thermal conductivity and low expansion silicon carbide dispersion-strengthened hypereutectic aluminum-silicon electronic packaging materials to meet the needs of aviation,aerospace,and electronic packaging fields.We used the powder metallurgy method and high-temperature hot pressing technology to prepare SiC/Al-Si composite materials with different SiC contents(5vol%,10vol%,15vol%,and 20vol%).The results showed that as the SiC content increased,the tensile strength of the composite material first increased and then decreased.The tensile strength was the highest when the SiC content was 15%;the sintering temperature significantly affected the composite material’s structural density and mechanical properties.Findings indicated 700℃was the optimal sintering and the optimal SiC content of SiC/Al-Si composite materials was between 10%and 15%.Besides,the sintering temperature should be strictly controlled to improve the material’s structural density and mechanical properties. 展开更多
关键词 silicon carbide Electronic packaging materials Powder metallurgy Mechanical properties Composite materials
下载PDF
Steam Oxidation Resistance of Nitride Bonded Silicon Carbide Refractories for Waste Incinerators at Elevated Temperatures 被引量:1
2
作者 HUANG Zhigang WANG Jiaping +2 位作者 LI Jie CAO Huiyan WU Jiguang 《China's Refractories》 CAS 2019年第3期4-7,共4页
Steam oxidation resistance of Si3N4 and Si2N2O as well as SiAlON bonded SiC refractories at 900℃was tested according to ASTM-C863.Phase composition and microstructure before and after oxidation were analyzed by XRD a... Steam oxidation resistance of Si3N4 and Si2N2O as well as SiAlON bonded SiC refractories at 900℃was tested according to ASTM-C863.Phase composition and microstructure before and after oxidation were analyzed by XRD and SEM.The results show that Si3N4 and Si2N2O bonded SiC refractory presents better steam oxidation resistance than SiAlON bonded SiC.For Si3N4 and Si2N2O bonded SiC,the oxidation speed is higher with more pronounced volume expansion in the early 100 h;afterwards,the volume expansion slows down gradually and starts to level off after 300 h.It is considered that the high silica glass phase formed during the oxidation covers Si3N4 and Si2N2O,and SiC as a protective layer and fills the open pores.But for SiAlON bonded SiC,the volume expands gradually and constantly with the increasing oxidation duration even after 500 h,due to the continuous formation of mullite transformed from oxidation products and Al2O3 in SiAlON. 展开更多
关键词 nitride bonded silicon carbide steam oxidation resistance waste incinerator
下载PDF
Development and Application of Multi-phase Nitrides Bonded Silicon Carbide Lintel Blocks for Dry Quenching Furnaces
3
作者 CAO Huiyan FENG Yanbin +4 位作者 ZHANG Xinhua HUANG Zhigang LI Jie WANG Xinhui WU Jiguang 《China's Refractories》 CAS 2023年第2期7-11,共5页
Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)... Multi-phase nitrides bonded silicon carbide lintel blocks were prepared using industrial SiC(SiC≥98 mass%,3-0.5,≤0.5 and≤0.044 mm),Si powder(Si≥98 mass%,≤0.044 mm),and SiO2 micropowder(SiO2≥96 mass%,d50=0.15 pm)as raw materials,and calcium lignosulfonate as the additive,batching,mixing,and molding on a vibration pressure molding machine,drying and then firing at 1420℃for 10 h in high-purity N2.The apparent porosity,the bulk density,the cold modulus of rupture,the hot modulus of rupture,and the linear expansion coefficient of the samples were tested.The phase composition and the microstructure of the samples at different nitriding depths(50,100,and 150 mm)were analyzed by XRD and SEM.The field application effects of the blocks were studied.The results show that:(1)the multi-phase nitrides bonded silicon carbide refractories can dynamically adjust their own phase composition and minimize structural and thermal stresses,improving the service life of key parts of dry quenching furnaces;(2)calcium lignosulfonate can improve the nitriding micro-environment of multi-phase nitrides bonded silicon carbide lintel blocks,successfully increasing the effective nitriding thickness of the blocks to 300 mm;(3)Sinosteel LI RR provides a unique concept in the design of materials and block types as well as the stable and scientific overall structure,promoting the industrialization process of dry quenching furnaces with long service life in China. 展开更多
关键词 inclined channel area dry quenching furnaces silicon carbide multi-phase nitrides lintel blocks
下载PDF
Silicon Nitride Bonded Silicon Carbide Bricks YB/T 4035-2007
4
作者 Zhang Xiaohui 《China's Refractories》 CAS 2011年第1期38-40,共3页
1 Scope This standard specifies the definition, classifica- tion, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of silicon nitri... 1 Scope This standard specifies the definition, classifica- tion, technical requirements, test methods, quality appraisal procedures, packing, marking, transportation, storage, and quality certificate of silicon nitride bonded silicon carbide bricks. 展开更多
关键词 TDG silicon nitride bonded silicon carbide Bricks YB/T 4035-2007
下载PDF
Effect of SiO_2 on the Preparation and Properties of Pure Carbon Reaction Bonded Silicon Carbide Ceramics 被引量:2
5
作者 武七德 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2004年第1期54-57,共4页
Effect of SiO 2 content and sintering process on the composition and properties of Pure Carbon Reaction Bonded Silicon Carbide (PCRBSC) ceramics prepared with C-SiO 2 green body by infiltrating silicon was presented... Effect of SiO 2 content and sintering process on the composition and properties of Pure Carbon Reaction Bonded Silicon Carbide (PCRBSC) ceramics prepared with C-SiO 2 green body by infiltrating silicon was presented.The infiltrating mechanism of C-SiO 2 preform was also explored.The experimental results indicate that the shaping pressure increases with the addition of SiO 2 to the preform,and the pore size of the body turned finer and distributed in a narrower range,which is beneficial to decreasing the residual silicon content in the sintered materials and to avoiding shock off,thus increasing the conversion rate of SiC.SiO 2 was deoxidized by carbon at a high temperature and the gaseous SiO and CO produced are the main reason to the crack of the body at an elevated temperature.If the green body is deposited at 1800℃ in vacuum before infiltration crack will not be produced in the preform and fully dense RBSC can be obtained.The ultimate material has the following properties:a density of 3.05-3.12g/cm3,a strength of 580±32MPa and a hardness of (HRA)91-92.3. 展开更多
关键词 reaction bonded silicon carbide SiO 2 FILLER properties
下载PDF
A Simple Way to Prepare Silicon Carbide Reinforced Graphite Composite Lubricating Materials 被引量:2
6
作者 韩永军 燕青芝 LI Xianhui 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2015年第2期288-291,共4页
SiC reinforced graphite composites were prepared via introducing carbide silicon into the natural graphite flakes(NGF) by hot-pressing process. Their physical and mechanical properties, including density, open poros... SiC reinforced graphite composites were prepared via introducing carbide silicon into the natural graphite flakes(NGF) by hot-pressing process. Their physical and mechanical properties, including density, open porosity, flexural strength, and friction behavior were investigated. The addition of 30vol% Si C increased the bending strength of composites materials to 127 MPa, 2 times higher than 60 MPa of commercial pure graphite block. What was particularly interesting was that the as-obtained graphite composite with 30vol% Si C kept the same low friction coefficient of about 0.1 as pure graphite, and the wear resistance of composites increased. 展开更多
关键词 lubricating materials silicon carbide mechanical property tribological property
下载PDF
Finite element simulation of the micromachining of nanosized-silicon-carbide-particle reinforced composite materials based on the cohesive zone model
7
作者 Hongmin Pen Jianhua Guo +2 位作者 Zizhen Cao Xianchong Wang Zhiguo Wang 《Nanotechnology and Precision Engineering》 EI CAS CSCD 2018年第4期242-247,共6页
A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale sim... A finite element method based on the cohesive zone model was used to study the micromachining process of nanosized silicon-carbide-particle(SiCp) reinforced aluminum matrix composites. As a hierarchical multiscale simulation method, the parameters for the cohesive zone model were obtained from the stress-displacement curves of the molecular dynamics simulation. The model considers the random properties of the siliconcarbide-particle distribution and the interface of bonding between the silicon carbide particles and the matrix.The machining mechanics was analyzed according to the chip morphology, stress distribution, cutting temperature, and cutting force. The simulation results revealed that the random distribution of nanosized SiCp causes non-uniform interaction between the tool and the reinforcement particles. This deformation mechanics leads to inhomogeneous stress distribution and irregular cutting force variation. 展开更多
关键词 Multiscale COHESIVE zone model NANOSIZED silicon carbide particles Composite materialS MICROMACHINING
下载PDF
Application of Reaction-Bonded Silicon Carbide in Manufacturing of Spacecraft Combustion Chamber
8
作者 CHEN Ming-he, GAO Lin, ZHOU Jian-hua, WANG Min (College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期2-,共1页
Silicon carbide (SiC) ceramics is a good structural ceramics material, which have a lot of excellent properties such as superior high-temperature strength up to a temperature of 1 350 ℃, chemical stability, good resi... Silicon carbide (SiC) ceramics is a good structural ceramics material, which have a lot of excellent properties such as superior high-temperature strength up to a temperature of 1 350 ℃, chemical stability, good resistance to thermal shock and high abrasion resistance. The silicon carbide ceramics material has so far been used widely for manufacturing various components such as heat exchangers, rolls, rockets combustion chamber. Sintering of ceramics structural parts have many technological method, the reaction-bonded is one of important sintering technology of ceramics structural parts. The preparation of reaction-bonded silicon carbide (RBSC) is based on a reaction sintering process, whereby a compacted body of α-SiC and carbon (graphite) powders is heated in contact with liquid silicon or gas silicon, which impregnates the body, converting the carbon (graphite) to β-SiC which bonds the original alpha grain. This process is characterized by low temperature and a short time sintering, and being appropriate to the preparation of large size and complex-shaped components, and so on. Besides, during compacting process of reaction sintering, it can maintain a stable dimension of ceramics parts. Therefore, the method of reaction-bonded silicon carbide ceramics has been identified as a technology suitable for producing complicated and highly exact dimensions’ ceramics parts. In this paper, the method of reaction-bonded silicon carbide was applied to the manufacturing of a complex-shaped spacecraft combustion chamber of SiC ceramics. SiC and carbon powder of 4~30 μm were chosen as the raw materials, green compacts containing appropriate wt.% carbon were formed using the mold press method, sintering was performed in a graphite electric furnace under an argon atmosphere. It was introduced in detail that the technological parameters and technological flow of reaction sintering silicon carbide ceramics. At the same time, physical and mechanical experiments such as bending strength, coefficient of thermal expansion, coefficient of thermal conductivity, gastight property, heat resisting property etc. have been carried out. The results demonstrated that spacecraft combustion chamber made from reaction sintering of silicon carbide ceramics is feasible and the results of experiment is satisfactory. The strength of high-temperature structural parts made by reaction sintered SiC varied with silicon content; Under the this article testing condition, the optimum silicon content is 10.5% for the part investigated. The method of reaction sintered SiC ceramics is suitable for manufacturing of complicated spacecraft parts with a working temperature of 1 500 ℃. 展开更多
关键词 silicon carbide ceramics SPACECRAFT combustion chamber reaction bonded
下载PDF
Electrochemical characteristics of ternary and quadruple lithium silicon nitrides as anode material for lithium ion batteries:the influence of precursors
9
作者 WEN Zhongsheng TIAN Feng +2 位作者 SUN Juncai JI Shijun XIE Jingying 《Rare Metals》 SCIE EI CAS CSCD 2008年第2期170-174,共5页
Ternary and quadruple lithium silicon nitride anode materials for lithium ion batteries with different precursors were prepared by the simple process of high-energy ball milling. High capacity and excellent cyclabilit... Ternary and quadruple lithium silicon nitride anode materials for lithium ion batteries with different precursors were prepared by the simple process of high-energy ball milling. High capacity and excellent cyclability were obtained. The influence of precursor introduction on the electrochemical performance of products was investigated. This research reveals that the electrochemical performance of lithium silicon hitilde can be enhanced significantly by doping O. The cyclability of quadruple lithium silicon nitfide can be optimized remarkably by controlling the introduction quantity of the precursors. It is possible for the composite to be used as a capacity compensator within a wide voltage cut-off window. 展开更多
关键词 lithium ion batteries high-capacity electrode material high-energy ball milling lithium silicon nitride wide voltage cut-off window
下载PDF
Drain-induced barrier lowering effect for short channel dual material gate 4H silicon carbide metal-semiconductor field-effect transistor
10
作者 张现军 杨银堂 +3 位作者 段宝兴 柴常春 宋坤 陈斌 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第9期455-459,共5页
Sub-threshold characteristics of the dual material gate 4H-SiC MESFET (DMGFET) are investigated and the analytical models to describe the drain-induced barrier lowering (DIBL) effect are derived by solving one- an... Sub-threshold characteristics of the dual material gate 4H-SiC MESFET (DMGFET) are investigated and the analytical models to describe the drain-induced barrier lowering (DIBL) effect are derived by solving one- and two- dimensional Poisson's equations. Using these models, we calculate the bottom potential of the channel and the threshold voltage shift, which characterize the drain-induced barrier lowering (DIBL) effect. The calculated results reveal that the dual material gate (DMG) structure alleviates the deterioration of the threshold voltage and thus suppresses the DIBL effect due to the introduced step function, which originates from the work function difference of the two gate materials when compared with the conventional single material gate metal-semiconductor field-effect transistor (SMGFET). 展开更多
关键词 silicon carbide metal-semiconductor contact dual material gate
下载PDF
Preparation of silicon carbide nitride films on Si substrate by pulsed high-energy density plasma
11
作者 Xueming Li Size Yang Xingfang Wu 《Journal of University of Science and Technology Beijing》 CSCD 2006年第3期272-276,共5页
Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitroge... Thin films of silicon carbide nitride (SiCN) were prepared on (111) oriented silicon substrates by pulsed high-energy density plasma (PHEDP). The evolution of the chemical bonding states between silicon, nitrogen and carbon was investigated as a function of discharge voltage using X-ray photoelectron spectroscopy. With an increase in discharge voltage both the C 1s and N 1s spectra shift to lower binding energy due to the formation of C--Si and N--Si bonds. The Si--C--N bonds were observed in the deconvolved C ls and N ls spectra. The X-ray diffractometer (XRD) results show that there were no crystals in the films. The thickness of the films was approximately 1-2 μm with scanning electron microscopy (SEM). 展开更多
关键词 silicon carbide nitride pulsed high-energy density plasma chemical bonding state
下载PDF
Predictive Modelling of Etching Process of Machinable Glass Ceramics, Boron Nitride, and Silicon Carbide
12
作者 Huey Tze Ting Khaled Abou-El-Hossein Han Bing Chua 《Materials Sciences and Applications》 2011年第11期1601-1621,共21页
The present paper discusses the development of the first and second order model for predicting the chemical etching variables, namely, etching rate, surface roughness and accuracy of advanced ceramics. The first and s... The present paper discusses the development of the first and second order model for predicting the chemical etching variables, namely, etching rate, surface roughness and accuracy of advanced ceramics. The first and second order etching rate, surface roughness and accuracy equations were developed using the Response Surface Method (RSM). The etching variables included etching temperature, etching duration, solution and solution concentration. The predictive models’ analyses were supported with the aid of the statistical software package – Design Expert (DE 7). The effects of the individual etching variables and interaction between these variables were also investigated. The study showed that predictive models successfully predicted the etching rate, surface roughness and accuracy readings recorded experimentally with 95% confident interval. The results obtained from the predictive models were also compared with Multilayer Perceptron Artificial Neural Network (ANN). Chemical Etching variables predictive by ANN were in good agreement with those with those obtained by RSM. This observation indicated the potential of ANN in predicting chemical etching variables thus eliminating the need for exhaustive chemical etching in optimization. 展开更多
关键词 Chemical Etching MACHINABLE Glass Ceramic BORON nitride silicon carbide RSM ANN
下载PDF
Purification of solar cell silicon materials through filtration 被引量:5
13
作者 CIFTJA Arjan ENGH Thorvald Abel KVITHYLD Anne 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期180-185,共6页
Silicon is the material most commonly used in the manufacturing of photovoltaic (PV) cells. In the current study, laboratory experiments of purification of solar cell silicon materials through filtration are carried o... Silicon is the material most commonly used in the manufacturing of photovoltaic (PV) cells. In the current study, laboratory experiments of purification of solar cell silicon materials through filtration are carried out. Inclusion removal from silicon was investigated. The purpose is to achieve clean silicon materials for solar cells. Silicon samples and filter samples were analyzed using microscope observation, EPMA, and X-ray detection. Silicon nitride (Si3N4) and silicon carbide (SiC) particles are the main non-metallic inclusions present in top-cut silicon scrap. Almost all inclusions larger than 10 μm can be removed from silicon by the porous foam filter. In mass fraction, more than 90% inclusions are removed. Si3N4 particles are mainly removed on the top surface of the filter, and SiC particles are mainly removed by entering the pores and attaching to the filter material. SiC inclusions are not only simply attached on the surface of the filter material, but are found also inside the filter material. There are SiC bridges near the filter materials. These bridges may fill the spaces between filter material, and this will further retard inclusions passing through the filter. Three-dimensional turbulent fluid flow and inclusion motion in the filter was calculated. Both experimental observation and fluid flow simulation indicate that most of the inclusions are entrapped at the upper part of the filter. 展开更多
关键词 solar cell silicon INCLUSIONS FILTRATION nitrides carbides fluid flow
下载PDF
Diffusion Bonding of Silicon Carbide Particulate Reinforced 2024 Al Composites 被引量:6
14
作者 Mingjiu ZHAO+, Liqing CHEN and Jing BI (Metal Matrix Composites Department, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110015, China) Gang ZHANG (Shenyang Institute of Technology, Shenyang 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2000年第5期471-474,共4页
A study has been made on diffusion bonding of SiCp/2024Ai composites by means of pure Al interlayer. In the condition of TB=843 K, PB=16 MPa, tB= 60 min, the diffusion bonded joint, with a shear strength of 235 MPa, w... A study has been made on diffusion bonding of SiCp/2024Ai composites by means of pure Al interlayer. In the condition of TB=843 K, PB=16 MPa, tB= 60 min, the diffusion bonded joint, with a shear strength of 235 MPa, was obtained when a 15 μm thick interlayer was used. The results of the shear testing and SEM indicate that fracture of the joint presented characteristics of ductile rupture. 展开更多
关键词 Diffusion Bonding of silicon carbide Particulate Reinforced 2024 Al Composites SICP AL
下载PDF
Preparation and Properties of Macroporous Silicon Nitride Ceramics by Gelcasting and Carbonthermal Reaction 被引量:2
15
作者 Wen ZHANG, Hongjie WANG+ and Zhihao JIN State Key Laboratory for Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an JiaotongUniversity, Xi’an 710049, China 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第6期894-898,共5页
Macroporous silicon nitride (Si3N4) ceramics with high strength, uniform structure and relatively high porosity were obtained by gelcasting and carbonthermal reaction in a two-step sintering technique. Microstructur... Macroporous silicon nitride (Si3N4) ceramics with high strength, uniform structure and relatively high porosity were obtained by gelcasting and carbonthermal reaction in a two-step sintering technique. Microstructure and composition were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD). Open porosity, pore size distribution and basic mechanical performance were measured by Archimedes method, mercury intrusion porosimetry and three-point bending methods, respectively. SEM and TEM results revealed that pores were formed by elongated β-Si3N4. SADP measurement proved the formation of SiC particles. The SiC granules were beneficial for the formation of high ratio elongated β-Si3N4, and at proper amount, they also acted as reinforcement phase. Thermodynamic analysis indicated that the mechanisms of the reactions were mainly associated with liquid-solid reaction and gas-liquid reaction. 展开更多
关键词 CERAMICS silicon nitride silicon carbide X-ray diffraction
下载PDF
Structural feature and electronic property of an (8, 0) carbon-silicon carbide nanotube heterojunction 被引量:4
16
作者 刘红霞 张鹤鸣 +1 位作者 胡辉勇 宋久旭 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第2期734-737,共4页
A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry ... A supercell of a nanotube heterojunction formed by an (8, 0) carbon nanotube (CNT) and an (8, 0) silicon carbide nanotube (SiCNT) is established, in which 96 C atoms and 32 Si atoms are included. The geometry optimization and the electronic property of the heterojunction are implemented through the first-principles calculation based on the density functional theory (DFT). The results indicate that the structural rearrangement takes place mainly on the interface and the energy gap of the heterojunction is 0.31 eV, which is narrower than those of the isolated CNT and the isolated SiCNT. By using the average bond energy method, the valence band offset and the conduction band offset are obtained as 0.71 and -0.03 eV, respectively. 展开更多
关键词 carbon nanotube/silicon carbide nanotube heterojunction electronic properties average-bond-energy method band offsets
下载PDF
STUDY ON PREPARATION OF REACTION BURNING SILICON CARBIDE BY CARBON POWDER
17
作者 武七德 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 1997年第3期35-40,共6页
The technology of preparing reaction burning silicon carbide (RBSC) by replacing SiC/C with entirely carbonaceous raw materials is investigated. Experimental results show the predominant factors of successfully prepar... The technology of preparing reaction burning silicon carbide (RBSC) by replacing SiC/C with entirely carbonaceous raw materials is investigated. Experimental results show the predominant factors of successfully preparing RBSC are as following:strictly controlling the porosity and pore diameter of biscuit, obtaining ideal carbon network permeating of Si and completely reaction between Si and beta-SiC. 展开更多
关键词 silicon carbide reaction burning carbonaceous raw material biscuit structure
下载PDF
Synthesis of SiC Whiskers from Silicon Nitride in Argon Atmosphere
18
作者 ZHANG Ying JIANG Mingxue ZHANG Junzhan CUI Xiwen 《China's Refractories》 CAS 2009年第1期21-25,共5页
SiC whiskers were synthesized by carbothermal reduction of silicon nitride, α-Si3N4 and β-Si3N4 powders were used as silicon sources, and graphite, active carbon and black carbon as carbon sources, as well as boron ... SiC whiskers were synthesized by carbothermal reduction of silicon nitride, α-Si3N4 and β-Si3N4 powders were used as silicon sources, and graphite, active carbon and black carbon as carbon sources, as well as boron oxide as catalyst. The synthesized SiC whiskers were characterized by XRD and SEM. The results showed that the synthesizing temperature should be above 1716 K; the decomposition of Si3N4 was the limited step in the synthesis of SiC whiskers; and catalyst not only offered the liquid condition, but also restricted the growth of SiC whiskers along one dimension. LS mechanism seems to explain well the growth of SiC whiskers. 展开更多
关键词 silicon carbide whiskers silicon nitride Growth mechanism
下载PDF
Effects of Three Silicon-based Raw Materials on Properties and Microstructure of MgO-Al-C Materials
19
作者 HAN Xiaoyuan SHI Kai +3 位作者 XIA Yi WANG Peixun LIU Yang SHANG Jianzhao 《China's Refractories》 CAS 2021年第4期30-35,共6页
To improve the thermal shock resistance(TSR)of MgO-Al-C materials,three silicon-based raw materials with low expansion coefficients(Si,fused quartz,and SiC)were introduced to the materials,and their effects on the pro... To improve the thermal shock resistance(TSR)of MgO-Al-C materials,three silicon-based raw materials with low expansion coefficients(Si,fused quartz,and SiC)were introduced to the materials,and their effects on the properties of the materials were studied by XRD and SEM.The results show that:(1)the conversion of Si to SiC,SiO2 and forsterite at high temperatures improves the hot modulus of rupture(HMOR),TSR and oxidation resistance of the materials,and the optimal Si addition is 6 mass%;(2)fused quartz improves the TSR of the materials,but its high temperature softening and crystal transformation are not conducive to the HMOR and oxidation resistance of the materials,and the optimal addition is 2 mass%;(3)the SiC addition improves the TSR,HMOR and oxidation resistance of the materials;however,when the SiC addition exceeds 10 mass%,there are more micro-cracks in the materials,decreasing the TSR and oxidation resistance. 展开更多
关键词 magnesia-aluminum-carbon materials silicon fused quartz silicon carbide thermal shock resistance hot performance
下载PDF
Thermal Conductivity of Carbon/Carbon Composites with the Fiber/Matrix Interface Modified by Silicon Carbide Nanofibers
20
作者 Jie Chen Xiang Xiong Peng Xiao 《Advances in Chemical Engineering and Science》 2016年第4期515-524,共10页
Silicon carbide nanofibers grew on the surface of carbon fibers of a unidirectional carbon preform by CCVD and then chemical vapor infiltration was used to densify the preform to get the SiCNF-C/C composite. The effec... Silicon carbide nanofibers grew on the surface of carbon fibers of a unidirectional carbon preform by CCVD and then chemical vapor infiltration was used to densify the preform to get the SiCNF-C/C composite. The effects of silicon carbide nanofibers on the microstructure of the pyrolytic carbon and the thermal conductivity of the SiCNF-C/C composite were investigated. Results show that silicon carbide nanofibers on the surface of carbon fibers induce the deposition of high texture pyrolytic carbon around them. The interface bonding between carbon fibers and pyrolytic carbon is well adjusted. So the efficiency of heat transfer in the interface of the composite is well enhanced. The thermal conductivity of the SiCNF-C/C composite is greater than that of the C/C composite, especially the thermal conductivity perpendicular to the fiber axis. 展开更多
关键词 silicon carbide Nanofiber Chemical Vapor Infiltration Interface Bonding Thermal Property
下载PDF
上一页 1 2 39 下一页 到第
使用帮助 返回顶部