The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distr...The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distribution of soil layers. These characteristics formed the clogging characteristics of silt soft soil, which greatly increased the construction difficulty and hindered the construction progress. Therefore, based on the basic physical and mechanical properties of silt soft soil in Nansha District of Guangzhou, this paper evaluated the clogging characteristics of three silt soft soil areas in Nansha District of Guangzhou through long-term permeability test, and carried out scanning electron microscope test to explore the influence of different parameters and microstructure on the clogging difficulty of silt soft soil. The results showed that the silt soft soil Zone I and Zone II (shallow layer) in Nansha District of Guangzhou were divided into slight siltation levels, and the silt soft soil Zone III (deep layer) was mild siltation level. Large pores were widely distributed in shallow silt soft soil, while the continuity of large pores in deep silt soft soil was poor. The migration of fine particles that failed to establish contact with surrounding particles in the soil blocks the small pores of seepage and thus produces siltation.展开更多
This paper firstly deals with the two different siltation patterns with siltation accelerating project on sandy beach and muddy beach, and then puts forward the calculation method for siltation of the project on muddy...This paper firstly deals with the two different siltation patterns with siltation accelerating project on sandy beach and muddy beach, and then puts forward the calculation method for siltation of the project on muddy beach based on the behavior of suspension and settlement of fine sediment particles. This method not only can qualitatively explain quite a number of natural phenomena, but also is examined by practical projects. Therefore, this method is of important practical significance in the practice of foreshore reclamation and beach protection as well as siltation acceleration.展开更多
The lack of clarity of how natural vegetation restoration influences soil organic carbon(SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest...The lack of clarity of how natural vegetation restoration influences soil organic carbon(SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest ecosystems.The aim of this study was to explore how natural vegetation restoration affects the SOC content and ratio of SOC components in soil macroaggregates(>250 μm), microaggregates(53–250 μm), and silt and clay(<53 μm) fractions in 30-, 60-, 90-and 120-year-old Liaodong oak(Quercus liaotungensis Koidz.) forests, Shaanxi, China in 2015.And the associated effects of biomasses of leaf litter and different sizes of roots(0–0.5, 0.5–1.0, 1.0–2.0 and >2.0 mm diameter) on SOC components were studied too.Results showed that the contents of high activated carbon(HAC), activated carbon(AC) and inert carbon(IC) in the macroaggregates, microaggregates and silt and clay fractions increased with restoration ages.Moreover, IC content in the microaggregates in topsoil(0–20 cm) rapidly increased;peaking in the 90-year-old restored forest, and was 5.74 times higher than AC content.In deep soil(20–80 cm), IC content was 3.58 times that of AC content.Biomasses of 0.5–1.0 mm diameter roots and leaf litter affected the content of aggregate fractions in topsoil, while the biomass of >2.0 mm diameter roots affected the content of aggregate fractions in deep soil.Across the soil profiles, macroaggregates had the highest capacity for HAC sequestration.The effects of restoration ages on soil aggregate fractions and SOC content were less in deep soil than in topsoil.In conclusion, natural vegetation restoration of Liaodong oak forests improved the contents of SOC, especially IC within topsoil and deep soil.The influence of IC on aggregate stability was greater than the other SOC components, and the aggregate stability was significantly affected by the biomasses of litter, 0.5–1.0 mm diameter roots in topsoil and >2.0 mm diameter roots in deep soil.Natural vegetation restoration of Liaodong oak forests promoted SOC sequestration by soil macroaggregates.展开更多
ADI method is adopted to establish a two-dimensional tidal current numerical model for Beilun Harbor based on the hydrologic data and sediment data. The current conditions of the site where the second stage project is...ADI method is adopted to establish a two-dimensional tidal current numerical model for Beilun Harbor based on the hydrologic data and sediment data. The current conditions of the site where the second stage project is going to be carried out are described. The analysis and calculations for the deposition and erosion in the harbor basin are performed, which provides references for the construction of the harbor. The effect of the pile group on the current is simulated by increasing the sea bed roughness which can be determined with empirical equations of artificial roughness. The method is considered to be applicable after verification with field data. The test has provided experiences for future mathematical modelling to simulate the open type hydraulic structures.展开更多
Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silte...Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silted with infertile materials considered unfit for crop production. A study was conducted to explain why the flood phenomenon occurred, to determine the physico-chemical properties of the sediments silted in the Kelantan Plains and to propose measures for soil mitigation. Results showed that the silted sediments were characterized by the presence of quarts, mica, feldspars, kaolinite, gibbsite and hematite believed to come from the top- and subsoil of the upland areas. The sediments’ pH was very low and Al and/or Fe contents were very high, while nitrogen and carbon contents varied from area to area. Soils in the Kelantan Plains badly affected by this great flood needed to undergo proper ameliorative program. The most appropriate measure would be to apply ground magnesium limestone in combination with bio-fertilizer fortified with beneficial microbes that would increase their pH to a level above 5, which consequently eliminates Al<sup>3+</sup> and/or Fe<sup>2+</sup> that causes toxicity to the crops growing on them. The organic material so added would enhance the formation of soil structures. It is advised that the farming communities in the upper reaches of the Kelantan River would have to follow the advice advocated by the Department of Agriculture, Peninsular Malaysia, via MyGAP initiative, in order to sustain agricultural production on their land.展开更多
文摘The silt soft soil in Nansha District of Guangzhou was the softest soft soil in China. It had the characteristics of high natural water content, high compressibility, long consolidation time, and complex layered distribution of soil layers. These characteristics formed the clogging characteristics of silt soft soil, which greatly increased the construction difficulty and hindered the construction progress. Therefore, based on the basic physical and mechanical properties of silt soft soil in Nansha District of Guangzhou, this paper evaluated the clogging characteristics of three silt soft soil areas in Nansha District of Guangzhou through long-term permeability test, and carried out scanning electron microscope test to explore the influence of different parameters and microstructure on the clogging difficulty of silt soft soil. The results showed that the silt soft soil Zone I and Zone II (shallow layer) in Nansha District of Guangzhou were divided into slight siltation levels, and the silt soft soil Zone III (deep layer) was mild siltation level. Large pores were widely distributed in shallow silt soft soil, while the continuity of large pores in deep silt soft soil was poor. The migration of fine particles that failed to establish contact with surrounding particles in the soil blocks the small pores of seepage and thus produces siltation.
文摘This paper firstly deals with the two different siltation patterns with siltation accelerating project on sandy beach and muddy beach, and then puts forward the calculation method for siltation of the project on muddy beach based on the behavior of suspension and settlement of fine sediment particles. This method not only can qualitatively explain quite a number of natural phenomena, but also is examined by practical projects. Therefore, this method is of important practical significance in the practice of foreshore reclamation and beach protection as well as siltation acceleration.
基金funded by the National Key Research and Development Program of China (2017YFC0504601)the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-ZDTP-036)the National Natural Science Foundation of China (41671513)
文摘The lack of clarity of how natural vegetation restoration influences soil organic carbon(SOC) content and SOC components in soil aggregate fractions limits the understanding of SOC sequestration and turnover in forest ecosystems.The aim of this study was to explore how natural vegetation restoration affects the SOC content and ratio of SOC components in soil macroaggregates(>250 μm), microaggregates(53–250 μm), and silt and clay(<53 μm) fractions in 30-, 60-, 90-and 120-year-old Liaodong oak(Quercus liaotungensis Koidz.) forests, Shaanxi, China in 2015.And the associated effects of biomasses of leaf litter and different sizes of roots(0–0.5, 0.5–1.0, 1.0–2.0 and >2.0 mm diameter) on SOC components were studied too.Results showed that the contents of high activated carbon(HAC), activated carbon(AC) and inert carbon(IC) in the macroaggregates, microaggregates and silt and clay fractions increased with restoration ages.Moreover, IC content in the microaggregates in topsoil(0–20 cm) rapidly increased;peaking in the 90-year-old restored forest, and was 5.74 times higher than AC content.In deep soil(20–80 cm), IC content was 3.58 times that of AC content.Biomasses of 0.5–1.0 mm diameter roots and leaf litter affected the content of aggregate fractions in topsoil, while the biomass of >2.0 mm diameter roots affected the content of aggregate fractions in deep soil.Across the soil profiles, macroaggregates had the highest capacity for HAC sequestration.The effects of restoration ages on soil aggregate fractions and SOC content were less in deep soil than in topsoil.In conclusion, natural vegetation restoration of Liaodong oak forests improved the contents of SOC, especially IC within topsoil and deep soil.The influence of IC on aggregate stability was greater than the other SOC components, and the aggregate stability was significantly affected by the biomasses of litter, 0.5–1.0 mm diameter roots in topsoil and >2.0 mm diameter roots in deep soil.Natural vegetation restoration of Liaodong oak forests promoted SOC sequestration by soil macroaggregates.
文摘ADI method is adopted to establish a two-dimensional tidal current numerical model for Beilun Harbor based on the hydrologic data and sediment data. The current conditions of the site where the second stage project is going to be carried out are described. The analysis and calculations for the deposition and erosion in the harbor basin are performed, which provides references for the construction of the harbor. The effect of the pile group on the current is simulated by increasing the sea bed roughness which can be determined with empirical equations of artificial roughness. The method is considered to be applicable after verification with field data. The test has provided experiences for future mathematical modelling to simulate the open type hydraulic structures.
文摘Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silted with infertile materials considered unfit for crop production. A study was conducted to explain why the flood phenomenon occurred, to determine the physico-chemical properties of the sediments silted in the Kelantan Plains and to propose measures for soil mitigation. Results showed that the silted sediments were characterized by the presence of quarts, mica, feldspars, kaolinite, gibbsite and hematite believed to come from the top- and subsoil of the upland areas. The sediments’ pH was very low and Al and/or Fe contents were very high, while nitrogen and carbon contents varied from area to area. Soils in the Kelantan Plains badly affected by this great flood needed to undergo proper ameliorative program. The most appropriate measure would be to apply ground magnesium limestone in combination with bio-fertilizer fortified with beneficial microbes that would increase their pH to a level above 5, which consequently eliminates Al<sup>3+</sup> and/or Fe<sup>2+</sup> that causes toxicity to the crops growing on them. The organic material so added would enhance the formation of soil structures. It is advised that the farming communities in the upper reaches of the Kelantan River would have to follow the advice advocated by the Department of Agriculture, Peninsular Malaysia, via MyGAP initiative, in order to sustain agricultural production on their land.