Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has b...Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has been discovered from this interval in Jiaoshiba, Changning and Weiyuan shale gas fields in Sichuan Province. However, there is no significant discovery in other parts of the basin due to the different quality of black shale and the differences of tectonic evolution. Based on the progress of shale gas geological theory and exploration discoveries, as well as the theory of "source rock and cap rock controls on hydrocarbon accumulation", of the Upper Ordovician the main controlling factors Wufeng Formation-Lower Silurian Longmaxi Formation shale gas enrichment in the Sichuan Basin and its peripheral areas were analyzed, and the source rock and cap rock controls on the shale gas were also discussed. The results can provide new insights for the next shale gas exploration in this area.展开更多
Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and res...Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina.展开更多
Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakth...Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3.展开更多
Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosi...Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability.展开更多
The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through ...The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher.展开更多
The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and hig...The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume.展开更多
In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study t...In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study the macerals,organic pores and connectivity of organic pores in the lower Paleozoic organic-rich shale samples from Southern China.Combined with the mechanism of hydrocarbon generation and expulsion and pore forming mechanism of organic matter-based activated carbon,the relationships between organic pore development and the organic matter type,hydrocarbon generation process,diagenesis and pore pressure were explored to reveal the controlling factors of the formation,preservation and connectivity of organic pores in shale.(1)The generation of organic pores goes on through the whole hydrocarbon generation process,and is controlled by the type,maturity and decomposition of organic matter;the different hydrocarbon generation components and differential hydrocarbon-generation evolution of kerogen and solid asphalt lead to different pore development characteristics;organic pores mainly develop in solid bitumen and hydrogen-rich kerogen.(2)The preservation of organic pores is controlled by maturity and diagenesis,including the steric hindrance effect of in-situ hydrocarbon retention,rigid mineral framework formed by recrystallization,the coupling mechanism of pore-fluid pressure and shale brittleness-ductility transition.(3)The Ro of 4.0%is the maturity threshold of organic pore extinction,the shale layers with Ro larger than 3.5%have high risk for shale gas exploration,these shale layers have low gas contents,as they were in an open state before uplift,and had high hydrocarbon expulsion efficiency and strong aromatization,thus having the"congenital deficiency"of high maturity and pore densification.(4)The pores in the same organic matter particle have good connectivity;and the effective connectivity between different organic matter pores and inorganic pores and fractures depends on the abundance and distribution of organic matter,and development degree of pores and fractures in the shale;the accumulation,preservation and laminar distribution of different types of organic matter in high abundance is the prerequisite for the development and connection of organic pores,grain margin fractures and bedding fractures in reservoir.展开更多
Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied usin...Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region.展开更多
Based on the lithologies,sedimentary structures,graptolite zones,inorganic geochemical characteristics,electrical data of 110 shale gas wells in southern Sichuan Basin and the mineral quantitative analysis technology ...Based on the lithologies,sedimentary structures,graptolite zones,inorganic geochemical characteristics,electrical data of 110 shale gas wells in southern Sichuan Basin and the mineral quantitative analysis technology of scanning electron microscope,the stratigraphic sequences of the Upper Ordovician Katian Stage-Himantian Stage-Silurian Rhuddanian Stage-Aeronian Stage are divided,the sedimentary characteristics and fourth-order sequence evolution are analyzed.The target layer can be divided into two sequences,namely SQ1 and SQ2.According to Ordovician-Silurian sedimentary background,the gamma value of the target layer and U/Th,5 maximum flooding surfaces and 12 system tracts are identified.According to system tracts and their combinations,eight fourth-order sequences are identified,namely,Pss1-Pss8 from old to new.The development period and scale of dominant shale facies from Katian stage to Aeronian stage in southern Sichuan are restored.The best-quality dolomite/calcite-bearing siliceous shale facies,siliceous shale facies,clay-bearing siliceous shale facies and feldspar-bearing siliceous shale facies mainly occur in Pss3-Pss5 of Weiyuan,Western Chongqing and Luzhou,Pss6 of Western Changning-Northern Luzhou-Central Western Chongqing and Pss3-Pss4 of Changning.The siliceous clay shale facies second in quality mainly occurs in Pss6 of Southern Luzhou-Changning area(excluding Western Changning area),Pss7 of Eastern Weiyuan-Northern Western Chongqing-Southern Luzhou and Pss8 of Northern Luzhou-Weiyuan-Western Chongqing.The fourth-order sequence evolution model of Katian stage-Aeronian stage in southern Sichuan is established.During the depositional period of Pss1-Pss8,the sea level had six regressions and five transgressions,and the first transgression SQ2-MFS1 after glaciation was the largest flooding surface.展开更多
Acoustic wave velocity has been commonly utilized to predict subsurface geopressure using empirical relations.Acoustic wave velocity is, however, affected by many factors. To estimate pore pressure accurately, we here...Acoustic wave velocity has been commonly utilized to predict subsurface geopressure using empirical relations.Acoustic wave velocity is, however, affected by many factors. To estimate pore pressure accurately, we here propose to use elastic rock physics models to understand and analyze quantitatively the various contributions from these different factors affecting wave velocity. We report a closed-form relationship between the frame flexibility factor(γ) in a rock physics model and differential pressure, which presents the major control of pressure on elastic properties such as bulk modulus and compressional wave velocity. For a gas-bearing shale with abundant micro-cracks and fractures, its bulk modulus is much lower at abnormally high pore pressure(high γ values) where thin cracks and flat pores are open than that at normal hydrostatic pressure(low γ values) where pores are more rounded on average. The developed relations between bulk modulus and differential pressure have been successfully applied to the Upper Ordovician Wufeng and Lower Silurian Longmaxi formations in the Dingshan area of the Sichuan Basin to map the three-dimensional spatial distribution of pore pressure in the shale, integrating core, log and seismic data. The estimated results agree well with field measurements. Pressure coefficient is positively correlated to gas content. The relations and methods reported here could be useful for hydrocarbon exploration, production, and drilling safety in both unconventional and conventional fields.展开更多
Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magneti...Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magnetic resonance(NMR)experiments of different saturated wetting media were carried out.Based on the image processing technology and the results of gas desorption,the pore-fracture configuration of the shale reservoirs and its influence on gas-filled mechanism were analyzed.(1)The reservoir space includes organic pores,inorganic pores and micro-fractures and there are obvious differences between wells in the development characteristics of micro-fractures;the organic pores adjacent to the micro-fractures are poorly developed,while the inorganic pores are well preserved.(2)According to the type,development degree and contact relationship of organic pore and micro-fracture,the pore-fracture configuration of the shale reservoir is divided into four types.(3)Based on the differences in NMR T_(2) spectra of shale samples saturated with oil and water,an evaluation parameter of pore-fracture configuration was constructed and calculated.The smaller the parameter,the better the pore-fracture configuration is.(4)The shale reservoir with good pore-fracture configuration has well-developed organic pores,high porosity,high permeability and high gas content,while the shale reservoir with poor pore-fracture configuration has micro-fractures developed,which improves the natural gas conductivity and leads to low porosity and gas content of the reservoir.(5)Based on pore-fracture configuration,from the perspective of organic matter generating hydrocarbon,micro-fracture providing migration channel,three types of micro gas-filled models of shale gas were established.展开更多
Quartz crystallinity index(QCI)was used to reflect the crystallisation of silica in the Late Ordovician Wufeng(WF)and Early Silurian Longmaxi(LM)Formation shale,as well as the airborne volcanic ash-derived silica in t...Quartz crystallinity index(QCI)was used to reflect the crystallisation of silica in the Late Ordovician Wufeng(WF)and Early Silurian Longmaxi(LM)Formation shale,as well as the airborne volcanic ash-derived silica in the Lucaogou Formation tuffaceous shale,to distinguish the two types of silica.The silica in different graptolite biozones exhibited different crystallisation.The WF2–3,LM1–4 graptolite biozones showed obviously lower QCI values than the LM5–9 graptolite biozones and the Lucaogou Formation samples.The graptolite organisms played the role of adsorption,fixation,and precipitation in silicon accumulation and enrichment in stratum.The biogenic origin caused the poorest quartz crystallisation in WF2–3 and LM1–4 graptolite biozones samples.The airborne volcanic ash-derived silica in the Lucaogou Formation tuffaceous shale exhibited relatively poor quartz crystallisation because of weaker diagenesis intensity.Generally,although the WF2–3 and LM1–4 graptolite biozones underwent strong diagenesis and contained a small amount of detrital quartz,the silica still exhibited lower QCI values than the airborne volcanic ash-derived silica in the Lucaogou Formation tuffaceous shale.The biogenic silica crystallisation was much poorer than that of the airborne volcanic ash-derived silica.QCI is an effective quantitative index to demonstrate the biogenic silica in the organic-rich and silica-rich shale.展开更多
基金supported by the National Natural Science Foundation of China(grant No.41202103)
文摘Objective The Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation is one of the priority interval for shale gas exploration in the Sichuan Basin and its peripheral areas, and commercial shale gas has been discovered from this interval in Jiaoshiba, Changning and Weiyuan shale gas fields in Sichuan Province. However, there is no significant discovery in other parts of the basin due to the different quality of black shale and the differences of tectonic evolution. Based on the progress of shale gas geological theory and exploration discoveries, as well as the theory of "source rock and cap rock controls on hydrocarbon accumulation", of the Upper Ordovician the main controlling factors Wufeng Formation-Lower Silurian Longmaxi Formation shale gas enrichment in the Sichuan Basin and its peripheral areas were analyzed, and the source rock and cap rock controls on the shale gas were also discussed. The results can provide new insights for the next shale gas exploration in this area.
基金Supported by the China National Science and Technology Major Project(2017ZX05035-001)。
文摘Through graptolite identification in profiles,graptolite zone division,contour map compilation,and analysis of mineral composition,TOC content,lamina distribution features of shale samples,the biostratigraphic and reservoir characteristics of Ordovician Wufeng Formation-Silurian Longmaxi Formation in the Sichuan Basin and its peripheral are sorted out.There are 4 graptolite zones(WF1 to WF4)in Wufeng Formation and 9(LM1 to LM9)in Longmaxi Formation,and the different graptolite zones can be calibrated by lithology and electrical property.The shale layers of these graptolite zones have two depocenters in the southwest and northeast,and differ in mineral composition,TOC,and lamina types.Among them,the graptolite zones of lower WF2 and WF4 are organic matter-poor massive hybrid shale,the upper part of WF1-WF2 and WF3 have horizontal bedding hybrid shale with organic matter,the LM1-LM4 mainly consist of organic-rich siliceous shale with horizontal bedding,and the LM5-LM9 graptolite zones consist of organic-lean hybrid shale with horizontal bedding.The mineral composition,TOC and lamina types of shale depend on the paleo-climate,paleo-water oxidation-reduction conditions,and paleo-sedimentation rate during its deposition.Deposited in oxygen-rich warm water,the lower parts of WF1 and WF2 graptolite zones have massive bedding,low TOC and silicon content.Deposited in cooler and oxygen-rich water,the WF4 has massive bedding,high calcium content and low TOC.Deposited in anoxic water with low rate,the upper part of WF2,WF3,and LM1-LM4 are composed of organic rich siliceous shale with horizontal bedding and high proportion of silt laminae.Deposited in oxygen rich water at a high rate,the graptolite zones LM5-LM9 have low contents of organic matter and siliceous content and high proportions of silt lamina.
基金Supported by the China National Science and Technology Major Project(2016ZX05062)the PetroChina Science and Technology Major Project(2016E-0611)
文摘Marine shale gas resources have great potential in the south of the Sichuan Basin in China.At present,the high-quality shale gas resources at depth of 2000–3500 m are under effective development,and strategic breakthroughs have been made in deeper shale gas resources at depth of 3500–4500 m.To promote the effective production of shale gas in this area,this study examines key factors controlling high shale gas production and presents the next exploration direction in the southern Sichuan Basin based on summarizing the geological understandings from the Lower Silurian Longmaxi Formation shale gas exploration combined with the latest results of geological evaluation.The results show that:(1)The relative sea depth in marine shelf sedimentary environment controls the development and distribution of reservoirs.In the relatively deep water area in deep-water shelf,grade-I reservoirs with a larger continuous thickness develop.The relative depth of sea in marine shelf sedimentary environment can be determined by redox conditions.The research shows that the uranium to thorium mass ratio greater than 1.25 indicates relatively deep water in anoxic reduction environment,and the uranium to thorium mass ratio of 0.75–1.25 indicates semi-deep water in weak reduction and weak oxidation environment,and the uranium to thorium mass ratio less than 0.75 indicates relatively shallow water in strong oxidation environment.(2)The propped fractures in shale reservoirs subject to fracturing treatment are generally 10–12 m high,if grade-I reservoirs are more than 10 m in continuous thickness,then all the propped section would be high-quality reserves;in this case,the longer the continuous thickness of penetrated grade-I reservoirs,the higher the production will be.(3)The shale gas reservoirs at 3500–4500 m depth in southern Sichuan are characterized by high formation pressure,high pressure coefficient,well preserved pores,good pore structure and high proportion of free gas,making them the most favorable new field for shale gas exploration;and the pressure coefficient greater than 1.2 is a necessary condition for shale gas wells to obtain high production.(4)High production wells in the deep shale gas reservoirs are those in areas where Long11-Long13 sub-beds are more than 10 m thick,with 1500 m long horizontal section,grade-I reservoirs penetration rate of over 90%,and fractured by dense cutting+high intensity sand injection+large displacement+large liquid volume.(5)The relatively deep-water area in the deep-water shelf and the area at depth of 3500–4500 m well overlap in the southern Sichuan,and the overlapping area is the most favorable shale gas exploration and development zones in the southern Sichuan in the future.With advancement in theory and technology,annual shale gas production in the southern Sichuan is expected to reach 450×108 m3.
基金Supported by the National Science and Technology Major Project of China(2017ZX05035).
文摘Based on analysis of pore features and pore skeleton composition of shale,a“rigid elastic chimeric”pore skeleton model of shale gas reservoir was built.Pore deformation mechanisms leading to increase of shale porosity due to the pore skeleton deformation under overpressure were sorted out through analysis of stress on the shale pore and skeleton.After reviewing the difficulties and defects of existent porosity measurement methods,a dynamic deformed porosity measurement method was worked out and used to measure the porosity of overpressure Silurian Longmaxi Formation shale under real formation conditions in southern Sichuan Basin.The results show:(1)The shale reservoir is a mixture of inorganic rock particles and organic matter,which contains inorganic pores supported by rigid skeleton particles and organic pores supported by elastic-plastic particles,and thus has a special“rigid elastic chimeric”pore structure.(2)Under the action of formation overpressure,the inorganic pores have tiny changes that can be assumed that they don’t change in porosity,while the organic pores may have large deformation due to skeleton compression,leading to the increase of radius,connectivity and ultimately porosity of these pores.(3)The“dynamic”deformation porosity measurement method combining high injection pressure helium porosity measurement and kerosene porosity measurement method under ultra-high variable pressure can accurately measure porosity of unconnected micro-pores under normal pressure conditions,and also the porosity increment caused by plastic skeleton compression deformation.(4)The pore deformation mechanism of shale may result in the"abnormal"phenomenon that the shale under formation conditions has higher porosity than that under normal pressure,so the overpressure shale reservoir is not necessarily“ultra-low in porosity”,and can have porosity over 10%.Application of this method in Well L210 in southern Sichuan has confirmed its practicality and reliability.
基金Supported by the PetroChina Science and Technology Project(2022KT1205).
文摘The relationship between fracture calcite veins and shale gas enrichment in the deep Ordovician Wufeng Formation-Silurian Longmaxi Formation (Wufeng-Longmaxi) shales in southern Sichuan Basin was investigated through core and thin section observations, cathodoluminescence analysis, isotopic geochemistry analysis, fluid inclusion testing, and basin simulation. Tectonic fracture calcite veins mainly in the undulating part of the structure and non-tectonic fracture calcite veins are mainly formed in the gentle part of the structure. The latter, mainly induced by hydrocarbon generation, occurred at the stage of peak oil and gas generation, while the former turned up with the formation of Luzhou paleouplift during the Indosinian. Under the influence of hydrocarbon generation pressurization process, fractures were opened and closed frequently, and oil and gas episodic activities are recorded by veins. The formation pressure coefficient at the maximum paleodepth exceeds 2.0. The formation uplift stage after the Late Yanshanian is the key period for shale gas migration. Shale gas migrates along the bedding to the high part of the structure. The greater the structural fluctuation is, the more intense the shale gas migration activity is, and the loss is more. The gentler the formation is, the weaker the shale gas migration activity is, and the loss is less. The shale gas enrichment in the core of gentle anticlines and gentle synclines is relatively higher.
基金Supported by the National Natural Science Foundation of China(41872124,42130803)Sinopec Key Scientific and Technological Project(P20046)。
文摘The enrichment characteristics of deep shale gas in the Ordovician Wufeng-Silurian Longmaxi formations in the Sichuan Basin and its surrounding areas are investigated through experiments under high temperature and high pressure,including petrophysical properties analyses,triaxial stress test and isothermal adsorption of methane experiment.(1)The deep shale reservoirs drop significantly in porosity and permeability compared with shallower shale reservoirs,and contain mainly free gas.(2)With higher deviatoric stress and axial strain,the deep shale reservoirs have higher difficulty fracturing.(3)Affected by structural location and morphology,fracture characteristics,geofluid activity stages and intensity,deep shale gas reservoirs have more complicated preservation conditions.(4)To achieve the commercial development of deep shale gas reservoirs,deepening geological understanding is the basis,and exploring reservoir simulation technology befitting the geological features is the key.(5)The siliceous shale and limestone-bearing siliceous shale in the Metabolograptus persculptus-Parakidograptus acuminatus zones(LM1-LM3 graptolite zones)are the high-production intervals for deep shale gas and the most favorable landing targets for horizontal drilling.Deeps water areas such as Jiaoshiba,Wulong,Luzhou and Changning with deep shale reservoirs over 10 m thickness are the most favorable areas for deep shale gas enrichment.It is recommended to carry out exploration and development practice in deep-water shale gas areas deposited deep with burial depth no more than 5000 m where the geological structure is simple and the shale thickness in the LM1-LM3 graptolite zone is greater than 10 m.It is better to increase the lateral length of horizontal wells,and apply techniques including high intensity of perforations,large volume of proppant,far-field and near-wellbore diversions to maximize the stimulated deep reservoir volume.
基金Supported by the National Natural Science Foundation of China(41690133)National Oil and Gas Science and Technology Major Project(2017ZX05036-002)。
文摘In view of strong heterogeneity and complex formation and evolution of organic pores,field emission scanning electron microscopy(FESEM),Raman spectrum and fluid injection+CT/SEM imaging technology were used to study the macerals,organic pores and connectivity of organic pores in the lower Paleozoic organic-rich shale samples from Southern China.Combined with the mechanism of hydrocarbon generation and expulsion and pore forming mechanism of organic matter-based activated carbon,the relationships between organic pore development and the organic matter type,hydrocarbon generation process,diagenesis and pore pressure were explored to reveal the controlling factors of the formation,preservation and connectivity of organic pores in shale.(1)The generation of organic pores goes on through the whole hydrocarbon generation process,and is controlled by the type,maturity and decomposition of organic matter;the different hydrocarbon generation components and differential hydrocarbon-generation evolution of kerogen and solid asphalt lead to different pore development characteristics;organic pores mainly develop in solid bitumen and hydrogen-rich kerogen.(2)The preservation of organic pores is controlled by maturity and diagenesis,including the steric hindrance effect of in-situ hydrocarbon retention,rigid mineral framework formed by recrystallization,the coupling mechanism of pore-fluid pressure and shale brittleness-ductility transition.(3)The Ro of 4.0%is the maturity threshold of organic pore extinction,the shale layers with Ro larger than 3.5%have high risk for shale gas exploration,these shale layers have low gas contents,as they were in an open state before uplift,and had high hydrocarbon expulsion efficiency and strong aromatization,thus having the"congenital deficiency"of high maturity and pore densification.(4)The pores in the same organic matter particle have good connectivity;and the effective connectivity between different organic matter pores and inorganic pores and fractures depends on the abundance and distribution of organic matter,and development degree of pores and fractures in the shale;the accumulation,preservation and laminar distribution of different types of organic matter in high abundance is the prerequisite for the development and connection of organic pores,grain margin fractures and bedding fractures in reservoir.
基金Supported by the China National Science and Technology Major Project(2017ZX05063002-009)National Natural Science Foundation of China(4177021173,41972120)CNPC-Southwest Petroleum University Innovation Consortium Science and Technology Cooperation Project(2020CX020000)。
文摘Based on field outcrop data,the effects of cyclic change of astronomical orbit and volcanic activity on organic carbon accumulation during the Late Ordovician-Early Silurian in the Upper Yangtze area were studied using cyclostratigraphic and geochemical methods.d13 C and chemical index of alteration(CIA)were used to filter the astronomical orbit parameters recorded in sediments.It is found that the climate change driven by orbital cycle controls the fluctuations of sea level at different scales,obliquity forcing climate changes drive thermohaline circulation(THC)of the ocean,and THC-induced bottom currents transport nutrient-laden water from high latitude regions to the surface water of low-latitude area.Hence,THC is the main dynamic mechanism of organic-carbon supply.The marine productivity indexes of Ba/Al and Ni/Al indicate that volcanic activities had limited effect on marine productivity but had great influences on organic carbon preservation efficiency in late Hirnantian(E4).Paleo-ocean redox environmental indicators Th/U,V/Cr and V/(V+Ni)show that there is a significant correlation between volcanism and oxygen content in Paleo-ocean,so it is inferred that volcanisms controlled the organic carbon preservation efficiency by regulating oxygen content in Paleo-ocean,and the difference in volcanism intensity in different areas is an important factor for the differential preservation efficiency of organic carbon.The organic carbon input driven by orbital cycle and the preservation efficiency affected by volcanisms worked together to control the enrichment of organic carbon in the Middle–Upper Yangtze region.
基金Supported by the Petro China Major Engineering Technology Field Test Project(2019F-31-01)Postdoctoral Project of Petro China Southwest Oil and Gas Field Company(20200304-03)。
文摘Based on the lithologies,sedimentary structures,graptolite zones,inorganic geochemical characteristics,electrical data of 110 shale gas wells in southern Sichuan Basin and the mineral quantitative analysis technology of scanning electron microscope,the stratigraphic sequences of the Upper Ordovician Katian Stage-Himantian Stage-Silurian Rhuddanian Stage-Aeronian Stage are divided,the sedimentary characteristics and fourth-order sequence evolution are analyzed.The target layer can be divided into two sequences,namely SQ1 and SQ2.According to Ordovician-Silurian sedimentary background,the gamma value of the target layer and U/Th,5 maximum flooding surfaces and 12 system tracts are identified.According to system tracts and their combinations,eight fourth-order sequences are identified,namely,Pss1-Pss8 from old to new.The development period and scale of dominant shale facies from Katian stage to Aeronian stage in southern Sichuan are restored.The best-quality dolomite/calcite-bearing siliceous shale facies,siliceous shale facies,clay-bearing siliceous shale facies and feldspar-bearing siliceous shale facies mainly occur in Pss3-Pss5 of Weiyuan,Western Chongqing and Luzhou,Pss6 of Western Changning-Northern Luzhou-Central Western Chongqing and Pss3-Pss4 of Changning.The siliceous clay shale facies second in quality mainly occurs in Pss6 of Southern Luzhou-Changning area(excluding Western Changning area),Pss7 of Eastern Weiyuan-Northern Western Chongqing-Southern Luzhou and Pss8 of Northern Luzhou-Weiyuan-Western Chongqing.The fourth-order sequence evolution model of Katian stage-Aeronian stage in southern Sichuan is established.During the depositional period of Pss1-Pss8,the sea level had six regressions and five transgressions,and the first transgression SQ2-MFS1 after glaciation was the largest flooding surface.
文摘Acoustic wave velocity has been commonly utilized to predict subsurface geopressure using empirical relations.Acoustic wave velocity is, however, affected by many factors. To estimate pore pressure accurately, we here propose to use elastic rock physics models to understand and analyze quantitatively the various contributions from these different factors affecting wave velocity. We report a closed-form relationship between the frame flexibility factor(γ) in a rock physics model and differential pressure, which presents the major control of pressure on elastic properties such as bulk modulus and compressional wave velocity. For a gas-bearing shale with abundant micro-cracks and fractures, its bulk modulus is much lower at abnormally high pore pressure(high γ values) where thin cracks and flat pores are open than that at normal hydrostatic pressure(low γ values) where pores are more rounded on average. The developed relations between bulk modulus and differential pressure have been successfully applied to the Upper Ordovician Wufeng and Lower Silurian Longmaxi formations in the Dingshan area of the Sichuan Basin to map the three-dimensional spatial distribution of pore pressure in the shale, integrating core, log and seismic data. The estimated results agree well with field measurements. Pressure coefficient is positively correlated to gas content. The relations and methods reported here could be useful for hydrocarbon exploration, production, and drilling safety in both unconventional and conventional fields.
基金Supported by the Petro China-Southwest Petroleum University Innovation Consortium Project(2020CX020104)Higher Education Innovative Talents Program(Plan 111)(D18016)Sichuan Collaborative Innovation Center for Shale Gas Resources and Environment SEC-2018-03)。
文摘Taking the Upper Ordovician Wufeng Formation to Lower Silurian Longmaxi Formation shale reservoirs in western Chongqing area as the study target,the argon ion polishing scanning electron microscope and nuclear magnetic resonance(NMR)experiments of different saturated wetting media were carried out.Based on the image processing technology and the results of gas desorption,the pore-fracture configuration of the shale reservoirs and its influence on gas-filled mechanism were analyzed.(1)The reservoir space includes organic pores,inorganic pores and micro-fractures and there are obvious differences between wells in the development characteristics of micro-fractures;the organic pores adjacent to the micro-fractures are poorly developed,while the inorganic pores are well preserved.(2)According to the type,development degree and contact relationship of organic pore and micro-fracture,the pore-fracture configuration of the shale reservoir is divided into four types.(3)Based on the differences in NMR T_(2) spectra of shale samples saturated with oil and water,an evaluation parameter of pore-fracture configuration was constructed and calculated.The smaller the parameter,the better the pore-fracture configuration is.(4)The shale reservoir with good pore-fracture configuration has well-developed organic pores,high porosity,high permeability and high gas content,while the shale reservoir with poor pore-fracture configuration has micro-fractures developed,which improves the natural gas conductivity and leads to low porosity and gas content of the reservoir.(5)Based on pore-fracture configuration,from the perspective of organic matter generating hydrocarbon,micro-fracture providing migration channel,three types of micro gas-filled models of shale gas were established.
基金supported by the National Natural Science Foundation of China for Young Scholar(Grant No.41902148)the National Science and Technology Major Project of the Ministry of Science and Technology of China(Grant No.2016ZX05034-002)the Innovative Special Project of Sino-US Intergovernmental Cooperation in Science and Technology(Carboniferous-Permian shale reservoir evaluation and technology between China and the USA)(Grant No.2017YFE0106300)。
文摘Quartz crystallinity index(QCI)was used to reflect the crystallisation of silica in the Late Ordovician Wufeng(WF)and Early Silurian Longmaxi(LM)Formation shale,as well as the airborne volcanic ash-derived silica in the Lucaogou Formation tuffaceous shale,to distinguish the two types of silica.The silica in different graptolite biozones exhibited different crystallisation.The WF2–3,LM1–4 graptolite biozones showed obviously lower QCI values than the LM5–9 graptolite biozones and the Lucaogou Formation samples.The graptolite organisms played the role of adsorption,fixation,and precipitation in silicon accumulation and enrichment in stratum.The biogenic origin caused the poorest quartz crystallisation in WF2–3 and LM1–4 graptolite biozones samples.The airborne volcanic ash-derived silica in the Lucaogou Formation tuffaceous shale exhibited relatively poor quartz crystallisation because of weaker diagenesis intensity.Generally,although the WF2–3 and LM1–4 graptolite biozones underwent strong diagenesis and contained a small amount of detrital quartz,the silica still exhibited lower QCI values than the airborne volcanic ash-derived silica in the Lucaogou Formation tuffaceous shale.The biogenic silica crystallisation was much poorer than that of the airborne volcanic ash-derived silica.QCI is an effective quantitative index to demonstrate the biogenic silica in the organic-rich and silica-rich shale.